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Abstract. Formal geometry is a fundamental tool for showing how rel-
evant metric qualities, such as depths, lengths, and volumes, as well as
location concepts, such as points, can be constructed from experience.
The ontological challenge of information grounding lies in the choice of
concepts to consider as primitive, vs. those to be constructed. It also lies
in accounting for the relativity and finiteness of experiential space. The
grounding approach proposed here constructs geometrical concepts from
primitives of the human attentional apparatus for guiding attention and
performing perceptual operations. This apparatus enables humans to take
attentional steps in their perceived vista environment and to perform ge-
ometric comparisons. We account for the relativity of experienced space
by constructing locations relative to a reference frame of perceived point-
like features. The paper discusses perceptual operations and the idea of
point-like features, and introduces a constructive calculus that reflects
the generation of domains of geometric comparison from the perspective
of an observer. The calculus is then used to construct a model and to
motivate an axiomatization of absolute geometry in a finite relativist
flavour.

Keywords: constructive Euclidean geometry, relativist geometry, infor-
mation grounding, operational semantics

1 Introduction

How should the multitude of spatial concepts underlying spatial data be inter-
preted in terms of experience? The philosophical grounding problem [12] gains
practical relevance if we ask ourselves what kind of observations a certain data
set refers to [36,16]. This question has recently led scientists to regard sensors
in a wider sense, including human observers, as a means to ground the semantic
web [14]. From a practical viewpoint, it remains often unclear how geometrical
attributes like widths, heights, depths and directions were (or could have been)
practically obtained. A waterbody gives rise to many possible water depths if the
underlying reference operations remain hidden [30,37]. Likewise, a given location
can be conceived in many different ways: relative to diverse egocentric or allo-
centric reference frames [25], as well as in terms of geographic coordinates. Since
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locations and geometric attributes are among the major categories underlying
spatial data, we are interested in the kinds of inter-subjective space experiences
they originate from, similar to [23].

Geometry, as all traditional mathematics, evolved from concrete experiences
and problems, stated by the Greeks or earlier. In order to achieve greater gener-
ality, modern age mathematicians drove their discipline away from these experi-
ences by means of abstraction and domain closure. For example, in arithmetics,
the experiential basis of natural numbers in counting soon became extended in
order to incorporate infinity, rational, real, and complex numbers. Just as arith-
metics abandoned explicit counting operations in order to close the numbers
with respect to arithmetic operations, geometry closed its experiential domain
of measurement by assuming infinities of points.

From the perspective of information grounding, the undisputed merits of
domain closure and abstraction make it sometimes difficult to see what the roots
of geometric information are. These roots of information play an important role
in all kinds of semantic reference systems [16]. In particular, spatial reference
systems are established by geodesists in terms of observed directions, angles and
lengths related to physically real, not abstract, phenomena. Thus, the kind of
geometry performed by a geodesist is different from mathematical geometry in
that it is constructive and finite instead of abstract and infinite1. This remains
true even if calculations are performed on discrete approximations of real number
fields, as they are in computers. Axiomatic geometries commonly begin with
abstractions but do not account for how they are obtained. They populate their
universe of discourse with abstract points, spheres, lines and planes, even though
an infinitely small point is a mental fiction [48].

Furthermore, from a practical viewpoint, there is no way of determining an
absolute point in space and time2. This relativity of space was recognized already
by Leibniz [18], but manifests itself also in spatial cognition research. Different
egocentric and allocentric frames of reference serve to construct different lev-
els of space apprehension: Starting from the space around the body [47], we
arrive at navigation space by reconstruction from memory [25]. It seems there-
fore inappropriate to base a theory about grounding spatial information on the
assumption of absolute or abstract space.

In this paper, we propose to conceive of geometry in terms of perceptual op-
erations, namely perceptual predications on foci of attention, as first suggested
in [37]. Foci of attention are atomic (but finite) moments in which an observer’s
attention is focused on some spot in his vista environment. Our predications are

1 For similar reasons, Habel [11] has proposed that cognitively adequate temporal
reference systems should be finite with a so-called density in intensio. A similar idea
stands behind Aristotle’s notion of potential infinities [1]. In our view, potentiality
can only mean that repeatable operations are available, following [20].

2 Even if we use a spatial reference system, this system is logically anchored in (and
therefore presupposes the identity of) concrete places. Such an anchor place is a
necessary part of a geodetic datum for a mathematical ellipsoid representing the
earth surface.
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inter-subjectively available operations for comparing foci3. The current paper
adds to this idea by accounting for relativism and constructive finitism of ex-
periential geometry (Sect. 2). We provide perceptual justification for our choice
of primitives and argue that the identity of locations needs to be constructed
based on length and direction comparisons taken with reference to some anchor
frame consisting of point-like features, such as a particular end of a rod (Sect. 3).
We then introduce an operational calculus that allows us to generate an appro-
priate finite model. Its rules can be used to motivate axioms of finite relativist
geometry.

2 Constructive and Axiomatic Geometries

What kinds of mathematical entities should be presumed in order to account
for experiential geometry? Axiomatic geometry is not a one-way street. Since
Euclid’s elements, a number of formalizations of Euclidean geometry have been
proposed, with different assumptions about admitted objects and relations. For
example, Hilbert [13] presupposed lines and points, whereas Tarski presumed
only points and two kinds of relations on them [44]. Pointless geometries [43,7],
on the contrary, presume a mereology of solids or spheres in order to define
regions [3].

The apparent flexibility of taking concepts as primitive seems to be an in-
evitable characteristic of mental fictions [48] and logical reifications [34]. From
a grounding perspective, however, the choice of primitives needs to be driven
not by mathematical elegance in the first place, but by human perceptual com-
petence. Similar to Greek mathematics, Suppes’ proposal [42] uses constructive
finite formalisms in order to deal with applied problems. In his formalism, geo-
metric figures are explicitly constructed by a finite series of steps from a small
point basis. The operations he proposes are doubling and bisecting of line seg-
ments, which allow, for example, to construct parallelograms (Fig. 1).

Note that this grounding approach differs from finite geometry in mathemat-
ics [21]. The interest is not in finite models for axiomatizations (such as affine
plane figures of finite order), but one describes how geometric figures and prop-
erties (of a Euclidean flavour) can be constructed in finite sequences. This is not
feasible in standard formalizations of Euclidean Geometry, since these require
infinite models due to some of their axioms.

Infinity axioms4 take the form of universal-existential sentences, i.e. ,
∀x1 , ... .∃y1 ... .Φ(x1 , ..., y1 , ...). They allow to express recursions of existence claims,
and thus to populate the domain of interpretation infinitely. Such axioms abound

3 The theoretical basis of this idea is developed at some length in [36].
4 By this notion, we vaguely refer to the axiomatic causes of infinity in a theory. These

may resemble the axiom of infinity of ZF-set theory, which enforces a set containing
successors for all its elements. We are yet unsure how to make our notion more
precise, since universal-existential form is only a necessary criterion. However, we
give examples for infinity axioms in the following.
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in geometry and enforce their models to be infinite. If we take Tarski’s elemen-
tary axiomatization of Euclidean Geometry [44], then we find 4 of the 13 axioms
to be of such a form (or translatable into such a form, see [45]). For example,
the axiom schema of continuity (Axiom 13) requires a boundary point for every
two predicates that divide a ray into two halves. This is essentially the idea of a
Dedekind cut, and thus requires the continuum of cardinality 2ℵ0 .

Fig. 1. Suppes’ constructive geometry can
be used to construct parallelograms. Bi-
secting line γ0, β0 yields new point a1 and
doubling line α0, a1 yields a2. Compare
[42].

Fig. 2. Tarski’s Axiom of Segment Con-
struction. Compare [45].

But even if we dispense with Axiom 13, it is provable that models still need to
be isomorphic to vector spaces over ordered fields [44], and these are infinite on
the cardinality level ℵ0. Reasons for this are the three remaining infinity axioms
of Pasch, Euclid and the Axiom of Segment Construction. The latter axiom,
for example, requires, for any existing pair of points b, c and for any given line
(denoted by another pair of points, q, a), the existence of a pair of points a, x
on that line which is congruent to b, c (compare Fig. 2). This requires infinity
by itself: There is now a new pair of points on a line, for example q, x in Fig. 2.
If we apply the axiom again to this pair and the line pair q, a, it requires a new
pair a, x∗ congruent to q, x, and so forth. Something equivalent is also enforced
by the axiom of Pasch.

In a constructive geometry, infinity axioms like the axiom of segment con-
struction need to be replaced by explicit constructions. These can be expressed
in first order logic (FOL) by a finite list of existential quantifications that state
the existence of any constructed point5. Another possibility is to describe the
underlying operations explicitly, not only their results, in the spirit of Piaget’s
logic [27]. This can be done in terms of a constructive calculus [19], such as those
used in intuitionistic logic or algebra. Both approaches are desirable and can be
combined: In Sect. 4, we will use a constructive calculus in order to motivate a
certain FOL axiomatization.

5 This approach was taken in [36], and is based on Quine’s proposal to express existence
by the use of the existential quantifier [34].
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3 Human Attention and Perceptual Operations

What kinds of human cognitive operations can serve as means of geometric con-
struction? In [38] and [36], we have argued that the human attentional apparatus,
through which human attention is anchored in pre-conceptual Gestalt mecha-
nisms, can serve as the operational basis for semantic grounding6. The idea is
that humans acquire certain pre-conceptual mechanisms in order to precompute
Gestalts [15] in their perceived near-body environment. Gestalts serve as an-
chors of attention, i.e. they allow referencing, and enable one to predicate the
presence of surfaces and other things (perceptual predication) without drawing
on conceptual reasoning. The mechanisms may involve conscious parts and may
be learned, e.g. in the sense of learning to play tennis: while the performance
must be guided and learned consciously, the complex sensory-motor details are
internalised.

The arguments for this view were recently advanced by Pylyshyn [31] based
on empirical findings in object based attention [39]. He argued that without a
pre-conceptual reference mechanism, human cognition would end up in a regress
cycle of meaningless concepts. That this human attentional apparatus is at the
same time the basis for inter-subjectivity of language, was recently argued by
Tomasello [46] and is a central idea behind Quine’s observation sentences [33].
According to Langacker [17] and Talmy, guided attention and Gestalt presence
account for the meaning of language as such. We refer to the cited literature and
to [38] and [36] for a deeper discussion.

3.1 Focusing Human Attention

We agree with von Glaserfeld7, that there has to be some “pulsing” mecha-
nism that produces discrete mental entities on the very lowest level of conscious
perception8.

We state the identity of a moment in which a human being focuses atten-
tion on a certain signal from the near-body environment. This signal may be a
precomputed Gestalt, i.e., a structure pre-conceptually synthesized from visual,
tactile, proprioceptive and other inputs, without the observer being necessarily
aware of it. As any phenomenon, a Gestalt can enter consciousness only via atten-
tional moments. The domain of foci of attention is considered as a root for other
domains of consciousness, as it is the only one that can be directly coordinated
across observers by the mechanism of joint attention [46]. It is also considered
to be finite and therefore discrete, because human memory is bounded.

A focus of attention may be distinguished from an other because they come
at different discrete time pulses. Perceiving time in its simplest form therefore

6 A similar suggestion was made by Marchetti [22] and called ‘attentional semantics’.
7 Ernst von Glasersfeld developed a ‘pulse’ model for the mental construction of uni-

ties, pluralities and number; see, for example, Chapter 9 in [10] or [9].
8 Although the question of whether conscious perception is discrete or not is still open,

there is much psychophysical evidence for its discreteness [49].
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means to perceive the temporal order, denoted by ≤T , of foci of attention. The
pulsing attention does not have to be focused on another signal. If it is, it pro-
duces a flow of conscious experience, which we call perceptual predication. Predi-
cation simply means that the human observer detects and stores the presence of
Gestalts at one or several foci of attention. Mental operations are then available
to construct higher level entities from this material flow of consciousness.

3.2 Identification of Point-like Features

It is essential to understand that the perception of surfaces plays a central role for
many other kinds of perceptual operations that can be performed. In this spirit,
Gibson [8] granted surfaces a central position in his ontology of the environment.
We argue here for surface-based perceptual predication.

Observers identify prominent parts of their environment, such as relative
parts of bodies, openings, or the free space in front of them, with respect to some
already identified reference surfaces. These were called features in the DOLCE
ontology [24]. They have their own criterion of identity, but existentially depend
on an identifiable object, which is their “host”. Perceivable features of a cup,
for example, are its handle but also its opening. The opening of a cup would
not exist without it, but is not a part of the cup. A feature of a building is the
opening of its entrance. Further examples for features are the corner of a table or
the peak of some mountain. We propose to call these latter examples point-like
features, because they give rise to concentric sphere Gestalts that correspond to
the mathematical fiction of a point.

Features are an important class of perceivable entities on their own, even
though they depend on host surfaces. Studies in Gestalt psychology provide
evidence for some sort of visual “hidden structure” that may account for this
phenomenon. Rudolf Arnheim [2] studied the visual perception of balance, shape
and form. He noticed that the perception of balance of black dots drawn into
a square (Fig. 3) depends on how they are placed relative to the hidden field
of visual tension shown in Fig. 4, which emerges relative to the square. Note
that this field is not part of the square drawing. It rather depicts how black
dots in the square are “dragged” towards its centers by a field of visual force.
Arnheim assumes that this Gestalt mechanism accounts for the apparent human
ability to detect whether the black dot is slightly off-center, without consciously
comparing directions and lengths.

There is also recent evidence for a neurological mechanism underlying the
intuitive sense of a location [4]. Burgess and others studied neurons in mammals,
e.g. rats, that identify relative allocentric places (called place cells). These cells
fire in response to other cells (called boundary vector cells), that detect surfaces
at a certain allocentric direction and distance (see Fig. 5). Allocentric means
that the firing of all these cells is independent of an egocentric reference frame,
but depends on external landmark objects and surfaces [4]. There are even place
cells configured in a grid-like manner [4]. Therefore, point-like features of this
kind may be called “proto-locations”. They can be considered preliminary stages
of spatial reference frames. The space of kinesthetic coordination of our body
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Fig. 3. A dot placed off-center into
a square [2].

Fig. 4. The hidden field of visual force ex-
terted on a dot placed into a square [2].

relies on lots of similar allocentric and egocentric mechanisms ([35], Chapter 3).

Fig. 5. Place cell firing (white dots) of a rat tracked in a box (left). Principle of bound-
ary vector cells (right). Adapted from Burgess [4], see text for details.

We denote the predications of arbitrary point-like features by PF (x, y)9. The
relation expresses that in the two moments of attention x and y, an observer
focused on the same point-like feature.

3.3 Identification of Directions and Lengths

Since the operations of doubling or bisecting of lines [42] seem too restricted
to capture constructive observed geometry in the near-body space, we will not
directly use Suppes’ proposal, even though we stick to his approach. Instead, we
will develop a constructive modification of Tarski’s axiomatization [44], because
it is possible to interpret his primitives [45] in an intuitive way.

We proposed in [37] that humans experience the geometrical and topological
structures of their environment by performing and comparing attentional steps.
An attentional step is the actual movement of attention from focus x to y.

9 Alternatively, one may want to differentiate different kinds of point-like features. One
also may add another parameter for pointing at the reference surface of a feature,
see [36].
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Humans perceive length and direction of steps, because they are able to compare
steps of equal length and of equal direction. And thereby, we assume, they are
able to observe and measure lengths of arbitrary things in their environment.

We have suggested [36,37] that there are (at least) two Gestalt mechanisms
available for geometric predication. One is a mechanism for comparing distances
between pairs of foci. It can be conceived as the result of constructing a straight
stick or some imagined straight Gestalt and being able to match its ends with
two pairs of foci. For example, physically, we may align a stick with some object
and move it around to match with some arbitrary foci of attention. We do
exactly this when we use a non-collapsible compass. Note that the operation
of comparing steps may be different from the one for performing steps10. The
observation predicate xy =L uz (compare Fig. 6) asserts that foci x and y and
foci u and z could be matched in this way11.

Fig. 6. Equal length and linear order for steps.

Another Gestalt mechanism allows for perceiving whether three foci of at-
tention are ordered along a line12. OnL(x , z , y) means that a focus z is on a line
between x and y or co-located with any of them (compare Fig. 6). Note that
OnL implies collinearity and betweenness13. It may be the result of comparing
a focus of attention with two others by detecting whether or not it lies on an
imagined line through them.

3.4 Identification of Locations

In distinction to common axiomatizations of point geometry, such as [44], the
behavior of these observation predicates needs to be described not on the level of
their domain and range, i.e., on the level of foci of attention, but with respect to
constructed locations. The “points” of an experiential geometry are locations,

10 We assume here that some operation for performing steps generates foci of atten-
tion, while some operation of comparing them generates geometric relations between
them.

11 This predicate was called ‘congruence’ by Taski in [44].
12 Whether these foci were generated in a sequence of steps or not, is considered irrel-

evant here.
13 This predicate was called ‘betweenness’ by Taski in [44].
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not foci of attention. They exist only relative to a frame of reference14 and
certain comparison operations, as the ones introduced above. This distinction
is ontologically essential, since a given attentional focus can be used to identify
different locations with respect to different frames of reference. For example, if
you sit in a train and focus two times on the apex of a table in front of you,
then, at both moments, you are focusing on the same point with respect to the
table, but on two different points with respect to a frame of reference located
outside the train and being at rest relative to the landscape.

A reference frame is not only necessary to fix the measurement units and
directions of an observed geometry. Together with basic comparison operations
discussed above, it actually establishes a geometry with all its points and all its
laws in the first place15. As A.S. Eddington argued, we must recognize “that
all our knowledge of space rests on the behaviour of material measuring scales”,
and not on some pre-experiential absolute space [6].

To illustrate this argument, suppose you are sitting again in this train with
some measuring tape at your disposal. Focusing on the table in front of you, you
can jump with your attention from one of its ends x to another y and back to
the first one x′. You will thereby notice that the length of the table has remained
equal, i.e., xy =L yx′, and therefore length comparison with reference to this
frame and the tape is seemingly symmetric and suited for Euclidean geometry.
But what if you choose a reference frame consisting of the table edges and a
tree rushing past the window? If you jump with your attention from this tree to
the table edge and back, symmetry of length is not preserved. So the choice of
the frame of reference influences formal properties of your geometry. Similarly, if
you choose to make length comparisons with a rubber band rather than a tape,
symmetry properties may be preserved in the second case, but not in the first
one (compare also [6]). So it is the choice of reference frame and comparison
operations together that constitute an experiential geometry16.

Euclidean-like geometry in perceived space can only be established based
on choosing a stable reference frame of 4 reidentifiable points for 3 dimensions.
Note that these four points need not only be reidentifiable by a single observer.
If the geometry needs to be shared among people, the points also need to be
indicated to others. From all we said above, this means they need to be chosen
on the basis of shared Gestalts external to the geometrical system. We propose
therefore that reference points may be based on point-like features, such as one
identifiable corner of a perceived table.

14 We use the term frame here not in the sense of a formal reference system [16], but
in the sense of perceivable point-like features one can refer to.

15 This idea of relative space was proposed already by Leibniz [18] and Poincaré [28].
16 But nevertheless, these choices do not yet determine it, as Poincaré argued [28].

Geometry is likewise affected by Quine’s empirical indeterminacy [32], in the sense
that, given a reference frame and comparison operators, there is more than one way
of building a geometry.
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4 An Operational Model of Constructive Relative
Geometry

Our goal is to show how observations expressed by the predicates OnL and
=L, as well as relative locations, may be constructed by a human observer. Our
main argument of Sect. 2 was that in a constructive finite geometry, infinity
axioms need to be substituted by explict constructions. But how to describe
an explicit construction in a formal way? We argued that one possibility is to
describe the underlying operations explicitly in terms of an operational calculus.
This means to describe experiential geometry by way of the operations that may
generate it. In the next subsection, we will discuss the notion of an operational
calculus known from intuitionism, and suggest how it may be reused to do finite
constructions as well as geometric inference by concatenating constructive and
inference calculi. We also show that locations or “points” of a geometry need
not be presumed but can be constructed relative to a reference frame.

4.1 Operational Calculi, Inference and Explicit Construction

We suggest to use a form of Paul Lorenzen’s operational calculus [19] to describe
an operational model of the perceptual operations that were discussed in the last
section. Note that a calculus, which is formal, should not be confused with the
actual human operations it describes17. Furthermore, it only reflects our own
preliminary ideas, which may need revision in the future18.

An operational calculus (not to be confused with infinitesimal calculus) is a
basic mathematical tool of formal construction based on rules. Its most promi-
nent application areas are formal inference in logic, where the validity of a sen-
tence is proved by generating it from other ones using certain rules of deduction,
and the formation of well-formed sentences from syntactic atoms. In intuition-
ism, constructive calculi are used in a more fundamental way, namely as a tool of
constructive justification for logic as such, based on the idea of inductive proofs.
Starting with Brouwer, Heyting and Kolmogorov, intuitionists have clarified the
meaning of logical constants as well as inference rules based on operating with
certain calculi19. Lorenzen’s general conception of a calculus does not only apply
to logic or inference, but also to mathematical object construction. For exam-
ple, the mathematical idea of infinity can be reduced to potential infinity if we
conceive it in terms of a calculus [20]. The flexibility of a calculus allows us to
do both, constructing objects as well as to infer facts about them.

A calculus is, according to Lorenzen [19], a description of a procedure to
generate symbols (“Figuren”) from given symbols. The given symbols are written

17 In particular, we do not claim here that cognitive human operations are formal
symbol manipulations, as claimed in [26].

18 In particular, an important further development will be to attempt a calculus without
predicates at all (other than equality), i.e., an algebra of perceptual operations.

19 Lorenzen’s “protologic” [19] can be seen as an early attempt to give logical constants
and deduction rules a proof-theoretic semantics, similar to Prawitz [29] and Dummett
[5] (see [40]).
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down at the beginning (A). New symbols are generated using a set of rules20 (R)
that can be iteratively applied to symbols. The rules have free variables standing
for symbols to be substituted for them. For example, the following is a calculus
for the construction of natural numbers:

Knat :

1 (A) (primitive atom: 1)

x 7−→ x1 (R) (object variable: x)

Note that the arrow above is not a logical implication but denotes a rule, i.e.
the permission to write down an instance of the symbols at the end of the arrow
for every substitution of variables with objects. We call these variables object
variables and denote them by lower case letters x, y, z.... They stand for objects
constructible in the calculus, in this case for numbers. A rule can have more than
one input or output figure separated by a comma, I, I, ... 7−→ O,O, .... At the
beginning of this calculus, there only exists the primitive atom 1. If we iteratively
apply rule R starting from the atom, we can generate a series of strings of
primitive atoms, e.g, R(1) = 11, R(R(1)) = 111, .... These strings of primitive
atoms are called objects, whereas strings of primitive atoms with object variables,
e.g. x1 in the rule above, are called object formulas. We generate new objects by
inserting objects into object formulas. We call a set of symbols generated in this
way a derivation. Note that derived objects can always be ordered according to
their production sequence.

We not only need to generate objects, but also realize relations among them.
Predications are strings of objects and relation symbols generated according to
further rules. Formulas are strings that additionally contain object variables
and are used in these rules. We generate predications by substituting objects in
formulas.

Knat+ :

1 + 1 = 11 (A) (primitive atoms: 1, +, =)

x + 1 = y 7−→ x1 + 1 = y1 (R1) (object variables: x, y, z)

x + y = z 7−→ x + y1 = z1 (R2)

For example, arithmetics can be constructed by rules R1 and R2, which allow
to derive the predication 11 + 11 = 1111 by substituting objects in the formula
x + y = z. Note that in contrast to Tarskian formal semantics, operative figures
do not have an interpretation into a domain. The distinction between predicates
and objects is therefore not based on such an interpretation.

Let us return now to our initial question: What is an explicit construction?
Our calculus Knat+ obviously contains closure rules. Our constructed arithmetic
set would be infinite if every constructible object actually was constructed, but
this is impossible as a matter of fact. We suggest therefore that an explicit
construction is not a calculus, but involves a particular application of a calculus

20 These correspond to axioms and theorems in axiomatic theories.
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in a finite number of steps, i.e. a particular derivation. This requires that the
existence of constructed entities needs to be conceived in terms of derivation,
not derivability.

In an intuitionist sense, however, existence ∃, as well as other logical con-
stants, are based on derivability in a calculus. Here, ∃x just means that object
x with certain properties can be derived [19]. Similarly, inference of rules, called
admissibility by Lorenzen [40], is based on derivability: A rule is called admissible
if it does not increase the set of derivable figures. For example, a rule is admis-
sible if the head of the rule can be derived from the condition by concatenating
already admissible rules (deduction)21. Analogously, negation is understood in
terms of underivability: ¬A means that predication A is underivable in the cal-
culus. This can be expressed by a particular admissible rule: ¬A is defined as
the rule A 7−→ ⊥, where ⊥ is an underivable symbol in the respective calculus
[19]22. Using this definition we can also infer negations, for example by reduc-
tio ad absurdum (R.A.A.): Suppose we have already derived ¬A and B 7−→ A,
where B is the hypothesis to be refuted. It is then easy to infer that ¬B. For,
since by condition B 7−→ A and by definition A 7−→ ⊥, we have B 7−→ ⊥ by
deduction, which just means ¬B.

We intend to use an operative calculus not only to do logical inference, but
also to generate initial finite models. Since the former is based on derivability
while the latter on actual derivation, we propose to distinguish calculi according
to their purpose, i.e. between inferential and constructive calculi. A construc-
tive calculus is just an auxiliary mechanism to construct a finite domain. Non-
existence means that an object actually has not been constructed in a particular
derivation, which encompasses but is broader than underivability. This interpre-
tation is useful since it can reflect a particular observation process: Observation
is a product of an observer taking perceptual decisions and directing his atten-
tion at phenomena present in his field of view. Thereby, he does not everything
he may be able to do, and we are only interested in his observed facts.

In an inferential calculus, instead, just as in intuitionistic logic, objects exist
and predications are true if and only if they are derivable in it. True facts are
either given (i.e., observed) or derivable from the given, and all others are consid-
ered false. If the constant ⊥ has been introduced into the calculus, negations can
be inferred by showing underivability from observed facts23. Regarding human
perception, such a calculus has its analogue in Gestalt completion mechanisms
[15], which account for large parts of unconscious automatic human reasoning.

In order to generate a model of finite relativist geometry, we propose therefore
to concatenate operational calculi in the following way: In Sect. 4.2, we generate
the domain of foci of attention in a constructive calculus, in which object deriva-

21 There are still further inference principles, e.g. inversion, see [19].
22 If this rule is admissible and ⊥ is underivable, then A must be underivable, too.
23 Another possibility is that the observer may predicate negative statements directly,

i.e. in terms of observed absence of a phenomenon in the field of view. In order to
account for the existence of occluded phenomena, observed absence thereby does not
imply non-existence.
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tion (not: derivability) corresponds to an observer’s generation of a focus, and
which allows “positive” initial predications as observed facts. In such a calcu-
lus, contradiction can never occur since every generated statement is a positive
assertion of some observed phenomenon. In order to infer expected Euclidean
properties from these observed facts, we then apply an inferential calculus in the
standard intuitionist sense to the finite number of facts generated in the former
calculus. This relational closure calculus contains closure rules (Sect. 4.3) which
largely correspond to geometric implications. The set of predications derivable
in this way is finite, because the set of relations on a finite domain is bound
to be finite. Note that the input to the inferential calculus are those and only
those positive facts generated in one particular derivation of the constructive
calculus. Furthermore, closure rules may have negations in their condition but
not in their heads. Thus the resulting model is assured to be finite and does not
contain contradictions.

We are aware that this procedure does not yet ensure that every model deriv-
able in this way is one of the intended finite relativist geometry. Our paper goal
is rather to construct one such model, and use it to demonstrate the consistency
of constructive inference rules.

4.2 Initial Attentional Construction

In the following, we will use letters a, b, c, d, ..., t to denote objects and x, y, z, v, w, u
to denote object variables. For convenience, we will use the following abbrevi-
ation for object figures: Let o be an object atom with a0 ≡ o. Let xy stand
for any object constructed by concatenation, then xy+1 ≡ xyo. For example,
a1 ≡ a0o ≡ oo. Thus, two object figures with different increments are always un-
equal. Now consider the following calculus for generating attentional steps and
their observed interrelations:

Kattention : (primitive atoms: o, OnL, =L, PF )

a0 (A)

xy 7−→ xy+1 (Rstep)

xy, xw, xu, xv 7−→ xyxw =L xuxv (RL)

xy, xw, xu 7−→ OnL(xy, xu, xw) (ROnL)

xy, xw 7−→ PF (xy, xw) (RPF )

The beginning of this calculus consists of a single focus of attention a0. The first
rule is a rule to generate a new attentional moment starting from any attentional
moment, i.e., to take a step. It generates foci of attention by incrementing the
subscripts of their symbols. All other rules do not generate foci of attention,
but relations among them. The second rule generates a predication stating that
xu, xv has the same distance as xy, xw. The third rule generates a predication
stating that xu lies on the line between xy, xw. The fourth rule associates two
foci on the same point-like feature.
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Taking an attentional step stands for the act of referencing, i.e. for moving
the attentional focus in the near-body environment. It generates our domain of
interpretation. The other operations represent perceptual predications, i.e. oper-
ations that compare and associate foci of attention with each other. In order to
take an attentional step with specific properties, we have to construct it by con-
catenating operations, i.e. by first taking a step and then generating the required
relations by comparison. This reflects the idea that predication and referencing
are two different kinds of operations, while in practice they may happen almost
synchronically.

In this calculus, we can generate the following sequence of foci of attention
constructing an equilateral triangle (compare Fig. 7). We first make a step from
the beginning to any other focus. Then we add another step such that the pairs
consisting of new focus and the two previous ones are congruent to the first step.

DerivationTriangle :

a1 |Rstep(a0)(1)

a2 |Rstep(a1)(2)

a0a1 =L a1a2 |RL(a0, a1, a1, a2)(3)

a0a1 =L a0a2 |RL(a0, a1, a0, a2)(4)

This is basically a description of what we do when we construct a triangle with
a compass, where a2 is in the intersection of two circles centered on a0 and a1
with radius a0, a1. Note that this procedure generates a nondegenerate triangle
only if these foci do not coincide (and are not on a line). This means we first
need to construct the notion of locational coincidence, which exists only relative
to some frame of reference.

Fig. 7. Construction of a triangle in terms
of attentional moments. Time is indicated
by the horizontal 3rd dimension in this
figure.

Fig. 8. A reference frame for a 3-
dimensional cartesian coordinate system.
The figure depicts its 3-dim spatial pro-
jection without time.

A spatial reference frame consists of 3 point-like features standing perpen-
dicular to each other on a common origin, which is also a point like feature.
For better readability, we write focus names as depicted in Fig. 8 and not with
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proper increments.

DerivationReferenceFrame :

s |Rstep(a∗)(1)

PF (s, s) |RPF (s, s)(2)

a1 |Rstep(s)(3)

PF (a1, a1) |RPF (a1, a1)(4)

a∗s =L sa1 |RL(a∗, s, s, a1)(5)

OnL(a∗, s, a1) |ROnL(a∗, s, a1)(6)

a2 |Rstep(a1)(7)

PF (a2, a2) |RPF (a2, a2)(8)

a∗s =L sa2 |RL(a∗, s, s, a2)(9)

a3 |Rstep(a2)(10)

PF (a3, a3) |RPF (a3, a3)(11)

a∗s =L sa3 |RL(a∗, s, s, a3)(12)

a∗a2 =L a2a3 |RL(a∗, a2, a2, a3)(13)

a∗a2 =L a1a3 |RL(a∗, a2, a1, a3)(14)

a∗a2 =L a1a2 |RL(a∗, a2, a1, a2)(15)

In this construction, s denotes a focus on the origin and ai denotes one of three
foci on perpendicular unit vectors in this reference system (compare Fig. 8).
Focus a∗ is on an auxiliary point needed to assert orthogonality. Orthogonality
is assured by the condition that distances of foci ai to each other are all congruent
to a∗a2, and by the fact that a∗ is not on the same point-like feature as s24. This
latter negative fact is inferred in the inference calculus of Sect. 4.3.

The construction of this reference frame assures that our model has got at
least 3 spatial dimensions. It therefore directly corresponds to Tarski’s lower
dimension axiom for 3D (compare [45]). Note also that a primitive way of time
perception (≤T ) is given by the derivation order.

4.3 Relational Closure Calculus

The following inferential calculus is intended to close the domain of relations
with respect to perceptual predications in such a way that it reflects our expec-
tations about experienced geometry. The rules that have to be introduced largely
correspond to geometric axioms in a FOL theory, such as the one of Tarski [41].

24 Orthogonality can then be proved along the following lines (compare Fig. 8): a∗, s, a1
lie on distinct point-like features of a line. Thus angle a∗, s, a2 must be supplementary
to angle a1, s, a2. Since segment a∗a2 is congruent to a1a2, and the angle sides must
also be congruent by construction, triangles a∗, s, a2 and a1, s, a2 must be congruent,
too. Thus the supplementary angles must be congruent. The intended result now
follows from the fact that congruent supplementary angles are always right angles.
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Yet, our calculus assures finite constructibility and accounts for relativity of
locations.

The beginning of this calculus consists of all and only those objects and facts
generated by the reference frame derivation of the initial attentional calculus in
the last section25. The calculus exclusively contains rules to add new relation
tuples based on existing ones (relational closure rules), so the object domain
remains equal. We will use inference to show which Euclidean properties are
entailed by this calculus. We will also show that relative geometry, which is built
on foci of attention, not locations, behaves neutral with respect to foci on the
same location, as expected.

Reference Frame Rules As argued in Sect. 3.4, a spatial reference frame
consists of point-like features, not foci of attention, and can be used to define
locations relative to it. For this purpose, it needs to retain the intrinsic geometric
properties constructed in the last section through time. This can be expressed by
requiring the same configuration for arbitrary foci that lie on the same point-like
features (we use

∧
for iterating over inputs and outputs). For a rule that can be

used into both directions, we write ⇀↽. We first abbreviate the fact that foci lie
on the same reference frame:

Rule 1 (DRef ) : PF (s, xs),
∧3

i=1 PF (ai , xi) ⇀↽ RefFrame(xs , x1 , x2 , x3 )

Rule 2 (RRef ) : RefFrame(xs , x1 , x2 , x3 ) 7−→ OnL(a∗, xs , x1 ),
∧3

i=1 a∗s =L xsxi ,∧
1≤i<j≤3 xixj =L a1a2

Rule 3 (Rfix ) : RefFrame(xs , x1 , x2 , x3 ) ⇀↽ xss =L ss,
∧3

i=1 xiai =L aiai

This last rule says that foci on the same point-like feature of the frame have zero
distance from each other. This assures that the reference frame is immovable with
respect to the observer. It is later used to prove that the four point-like features
correspond to four locations. Note that from rule 1 and the reflexive facts about
PF in the reference frame construction (p. XVf.), it follows immediately that
RefFrame(s, a1 , a2 , a3 ).

Rules about Congruence Consider the following closure rules for =L:

Rule 4 (Reflexivity=L
) : x , y 7−→ xy =L xy , xx =L yy

Rule 5 (Connectivity=L) : xy =L zu, xy =L vw 7−→ zu =L vw

Rule 6 (Identity=L
) : xy =L zz 7−→ x =Ref y

These rules seem to comply with our intuition about length comparison: The
distance of two foci is always equal to itself, and if a length equals two other
lengths, then those are equal, two. The last rule says that the distance of a
focus to itself is the same as the distance between two foci on the same location,
denoted by x =Ref y . The following rules can immediately be proven to follow:

25 The object constants s, a∗, a1, a2, a3 denote the generated foci of attention.
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Derived rule 1 (Symmetry=L
): xy =L zu 7−→ zu =L xy

Proof. xy =L zu by condition and xy =L zu by rule 4. By rule 5, zu =L xy.

Derived rule 2 (Transitivity=L
): xy =L uv , uv =L vz 7−→ xy =L vz

Proof. Applying derived rule 1 to the first input above directly yields rule 5.

Fig. 9. The location of a focus relative to the frame is fixed by its distance to the
point-like features of the frame.

In order to express that our model has got no more than three spatial dimen-
sions, we additionally require that the relative location of two foci of attention
x, y is fixed once their distances to the chosen four point-like features of the
reference frame are equal (Fig. 9). This is done by the following rules, which
define location equivalence relative to the frame introduced above:

Rule 7 (Dlocus) : RefFrame(xs , x1 , x2 , x3 ), xxs =L yxs ,
∧3

i=1 xxi =L yxi 7−→ x =Ref y

Rule 8 (R3D) : x =Ref x ′, y =Ref y ′ 7−→ xy =L y ′x ′

Location equivalence x =Ref x ′ simply means that x and x′ are bound to have
the same distances to every other location in focus on y and y′. To put it in
another way: length comparison behaves neutrally with respect to foci on the
same location. Note that the last rule has y′ and x′ reversed, which can be used
to prove that the order of foci is irrelevant. This is because equidistant steps
are reversible: it is always possible to return to the same locus by taking a step
forward and then a step back with the same length.

Derived rule 3 (Reflexivity=Ref
): x 7−→ x =Ref x

Proof. By rule 4, we have xa =L xa, where a ∈ {s, a1, a2, a3}. By rule 7, therefore
x =Ref x .

Derived rule 4 (Symmetry=Ref
): x =Ref y 7−→ y =Ref x

Proof. By derived rule 1 and the input, we have ya =L xa with a ∈ {s, a1, a2, a3}.
So by rule 7, y =Ref x .
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Derived rule 5 (Reversibility=L
): x , y 7−→ xy =L yx

Proof. By derived rule 3, x =Ref x and y =Ref y . By rule 8, xy =L yx.

The challenge is now to show that from these rules, a general locus neutral
geometry on foci can be obtained. The following generalizes these results over
location equivalent foci:

Derived rule 6 (Locus neutrality 1): x =Ref x ′, y =Ref y ′ 7−→ xy =L x ′y ′

Proof. By rule 8 and derived rule 3, we have xy =L yx and y′x′ =L x′y′. By
rule 8 and the input, it follows also that xy =L y′x′. By derived rule 2, then
xy =L x′y′.

Derived rule 7 x =Ref y 7−→ xx =L xy

Proof. By derived rule 3, we have x =Ref x. By input also x =Ref y, and so, by
derived rule 6, xx =L xy.

Derived rule 8 (Locus neutrality 2): x =Ref x ′, y =Ref y ′ 7−→ xx ′ =L yy ′

Proof. By derived rule 7 and the input, we have xx =L xx′ and yy =L yy′. By
rule 4, we also have xx =L yy, and by derived rule 2, xx =L yy′.

In the following, for convenience of reading, if we use object variables u, u′ with
prime, we implicitly consider u =Ref u ′ among the conditions of the respective
rule:

Derived rule 9 (General connectivity): xy =L zu, x ′y ′ =L vw 7−→ z ′u ′ =L v ′w ′

Proof. xy =L zu by condition. Since also zu =L z′u′ by locus neutrality 1, we
get z′u′ =L xy by connectivity and symmetry. With x′y′ =L vw by condition
and vw =L v′w′ by locus neutrality 1, we get x′y′ =L v′w′ by transitivity. Using
xy =L x′y′, we get the required result by transitivity.

Taking a step of zero length, i.e., to step on the spot, leads to the same locus:

Derived rule 10 (Locus identity): xy =L zz ′ ⇀↽ x =Ref y

Proof. From right to left: x =Ref y and z =Ref z′ by conditions. By locus
neutrality 2, the result immediately follows. From left to right: z =Ref z′ by
condition, so zz =L zz′ by derived rule 7. By condition, also xy =L zz′, and so
xy =L zz by connectivity. By rule 6, we get x =Ref y .

If we substitute location equivalence =Ref with the identity sign26 =, then
derived rule 10 corresponds to Tarski’s identity axiom of congruence [41,45], rule
R3D to Tarki’s first congruence axiom [41,45], and derived rule 9 to congruence
Axiom 2 in [41,45]. We have already mentioned that the lower dimension axiom
[41,45] is captured by the construction of the reference frame itself. Note that
locus identity is a biconditional instead of a simple implication as in [41]. This
directly assures that steps of zero length are always congruent to each other,
without any need to draw on the Axiom of Segment Construction.

26 But note that = in our theory does not mean the same as =Ref , because foci are not
locations.



XIX

Rules about Point-like Features Now consider the following rules which
basically generate the symmetric transitive closure of PF :

Rule 9 (ReflexivityPF ): PF (x , y) 7−→ PF (x , x ),PF (y , y)

Rule 10 (TransSymPF ): PF (x , y),PF (y , z ) 7−→ PF (x , z ),PF (z , x )

We can prove now that all foci on the same point-like feature of the chosen
reference frame (which are an equivalence class) are also on the same location.
This means the point-like features of the frame must range among the locations:

Derived rule 11 PF (x , s),PF (y , s) 7−→ x =Ref y

Proof. By rule 1, we have RefFrame(x , a1 , a2 , a3 ) and RefFrame(y , a1 , a2 , a3 ).
By rule 2, we have a∗s =L xai and a∗s =L yai for all i ∈ {1, 2, 3}. By transitivity,
yai =L xai, and by rule 3 and rule 6, xs =L ys. This satisfies the input of rule
7, and so x =Ref y .

Rules about Collinearity and Order The following rules characterize the
collinearity relation OnL. These are quite numerous compared to [41], because
we have to compensate for the loss of the Axiom of Pasch and Segment Con-
struction, compare [41]. First, OnL also has some identity rule: If we focus our
attention on a spot lying between two foci located at the same locus, then this
spot must be at the very same locus. The reflexivity axiom assures that OnL
applies to the degenerate case where two points coincide, and symmetry captures
the comprehensible fact that points on a line can be ordered in two ways. The
other rules assure that OnL-triples with two points in common are ordered on
a line, as one would expect.

Rule 11 (IdentityOnL): OnL(x , y , x ′), x =Ref x ′ 7−→ x =Ref y

Rule 12 (ReflexivityOnL): y =Ref y ′, x 7−→ OnL(x , y , y ′)

Rule 13 (SymmetryOnL): OnL(x , y , z ) 7−→ OnL(z , y , x )

Rule 14 (InnerTransOnL): OnL(x , y , z ),OnL(y , u, z ) 7−→ OnL(x , y , u),OnL(x , u, z )

Similarly, it is now possible to generalize these results over location equivalent
foci27:

Derived rule 12 (Locus neutrality 3): OnL(x , y , z ) 7−→ OnL(x ′, y ′, z ′)

Proof. OnL(x, y, z) by condition and OnL(y, y′, z) by reflexivity and symmetry.
By rule 14, we obtain OnL(x, y, z′), and reversing the result by symmetry yields
OnL(z′, y, x). Together with OnL(y, y′, x) by reflexivity, we get OnL(z′, y′, x) by
rule 14. And again, since OnL(y′, x′, x) by reflexivity and symmetry, we obtain
OnL(z′, y′, x′) by rule 14, and so OnL(x′, y′, z′) by symmetry.

27 Remember that the condition x =Ref x ′ is abbreviated using primed variables x, x′.
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Derived rule 13 (General Inner Transitivity):
OnL(x , y , z ),OnL(y ′, u, z ′) 7−→ OnL(x ′, y ′, u ′),OnL(x ′, u ′, z ′)

Proof. Follows immediately from applying rule 14 and derived rule 12.

Derived rule 14 OnL(x , y , z ),OnL(x ′, z ′, v) 7−→ OnL(y ′, z ′, v ′),OnL(x ′, y ′, v ′)

Proof. If we convert the condition by symmetry, we get the condition for derived
rule 13, and thus OnL(v′, z′, y′), whose symmetrical conversion yields the first
required result. Similarly, for the second result.

If we substitute =Ref with =, then rules 11, 12 and 13, as well as derived rules
13 and 14 correspond to essential axioms or theorems in [41]. The rules corre-
sponding theorems cannot be derived as in [41] because of the loss of infinity
axioms.

Subtractivity of Lengths Now we need to add rules for governing the in-
terrelation of the two geometrical observation predicates. These are essential in
order to describe something similar to a Euclidean space. It turns out that we
can use variants of Tarski’s five segment axiom in order to obtain a finite version
of absolute geometry.

Fig. 10. The (Inner) Five Segment Axiom. The length of segment yu is fixed once
x, y, z, u exhibit a five segment configuration. Source: [45].

The so called (inner) five segment axiom allows us to express length summa-
tions as well as to characterize angles. As shown in Fig. 10, the rule states that
in a certain configuration of four segments, the length of a fifth segment needs
to be fixed, i.e.

Rule 15 (Inner5Seg): IFS
( x y z u
x∗ y∗ z∗ u∗

)
7−→ yu =L y∗u∗

, where IFS
( x y z u
x∗ y∗ z∗ u∗

)
abbreviates OnL(x , y , z ),OnL(x∗, y∗, z∗), xz =L x∗z∗,

yz =L y∗z∗, xu =L x∗u∗, zu =L z∗u∗.
For example, using this rule, we can prove a subtractivity property of lengths:

Subtracting congruent segments from congruent segments derives congruent seg-
ments:

Derived rule 15 (Subtractivity):
OnL(x , y , z ),OnL(x∗, y∗, z∗), xz =L x∗z ∗, yz =L y∗z∗ 7−→ xy =L x∗y∗

Proof. Apply rule Inner5Seg to the condition taking x for u.
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Inferring and Using Negations The facts inferred so far do not incorporate
any negative statements. We show lastly how to derive negative statements from
observed positive facts in an intuitionist manner, and how to use these as inputs
to further rules that have negations in their conditions.

We can infer that our reference frame needs to be non-degenerate, by proving
that two foci of the reference frame do not coincide:

¬a∗ =Ref s(16)

Proof. We first prove the underivability of PF (a∗, s) in our inference calculus.
By rules 9 and 10, point-like features are equivalence classes of foci, so PF (a∗, s)
would be the case if and only if a∗ was in the same equivalence class that contains
s. The latter is just {s} by the reference frame derivation step (2) on page XV.
Since there are no other inference rules to derive PF (a∗, s), it is admissible that
PF (a∗, s) 7−→ ⊥. Now we prove the rest by R.A.A. By derived rule 7, we have
s =Ref a∗ 7−→ a∗s =L ss. Applying reflexivity rule 4 on all ai, we can use rule
3 (inverse direction) to derive s =Ref a∗ 7−→ RefFrame(a∗, a1 , a2 , a3 ), and rule
1 (inverse direction) to obtain s =Ref a∗ 7−→ PF (a∗, s). With PF (a∗, s) 7−→ ⊥,
we obtain s =Ref a∗ 7−→ ⊥, and this just means ¬a∗ =Ref s by definition.

It can now be similarly proved by contradiction that the point-like features of
the frame must not be coincident, too, e.g. for a pair xs , x1 :

Derived rule 16 (Non-degeneracy):
RefFrame(xs , x1 , x2 , x3 ) 7−→ ¬xs =Ref x1

Proof. From the condition and from rule RRef , we know that a∗s =L xsx1. Now
suppose xs =Ref x1 was derivable by inference. Then, by derived rule 10 (from
left to right), this would mean a∗ =Ref s. But this would contradict the already
derived statement ¬a∗ =Ref s above.

Once negation is introduced, we may add rules that have negations in their
conditions (negative closure rules). For example, there is one rule misssing in
order to derive that OnL triples with two loci in common are ordered on the
same line (compare [41]):

Rule 16 OuterTransOnL:
OnL(x , y , z ),OnL(y ′, z , u ′),¬y =Ref z 7−→ OnL(x ′, y ′, u ′),OnL(x ′, z ′, u ′)

We can then also add a variant of the five segment axiom with negative condition
in order to assure additivity of segments [41].

5 Conclusion

We have argued for certain perceptual operations that can be used to ground
geometry experientially. The human attentional apparatus allows for referencing
and predication of geometrically relevant Gestalt phenomena in the vista envi-
ronment. In particular, it allows for detecting whether one focus of attention
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precedes another one (primitive perception of time), whether attention focuses
on the same point-like feature (PF ), whether a given pair of foci is congruent
to another pair (=L), and whether a focus points between two others (OnL).
We argued further that, in order to construct a geometry in the usual relativist
sense based on these human competences, we need to identify a frame of ref-
erence made of point-like features, with respect to which relative locations, i.e.
points, can be identified by arbitrary observers.

We have used a constructive calculus to generate such a frame of reference.
A further inferential calculus with closure rules allowed us to introduce location
equivalence =Ref with respect to this frame, and to derive much of the intuitively
expected behavior of the geometric notions. In particular, it allows to derive
and use negations in an intuitionist sense. The former calculus was only used
to generate a particular initial construction, which corresponds to conscious
attentional selection and perceptual predication. The latter one accounts for
geometric inference, understood here as a kind of automatic Gestalt completion.
In this way, we constructed a reference frame that corresponds to the 3D lower
dimension axiom and its geometric properties by a set of inference rules (rules
1-17) that correspond to axioms and definitions of a FOL geometry. Such a
theory is a finite relativist variant of absolute geometry, which does not have the
parallel postulate, but allows us to define angles, lengths and projections with
their usual properties (compare [41], and also [36]), and furthermore to define
locations relative to the reference frame. A simple model of this theory can be
generated by exhaustively applying the inference calculus to the initial finite
construction.

Regarding the two geometric calculi, it would be desirable to have a consistent
set of rules that ensure every derivation to be a model of finite relativist geometry.
This is not the case yet. It is, for example, possible to construct a > 3D initial
space which would not comply with R3D. Regarding completeness, the calculus
lacks a rule that corresponds to the disjunctive outer connectivity Axiom 18 in
[45], since intuitionist disjunctions require one of the disjuncts to be derivable
[19]. In general, it is open which of the remaining Euclidean axioms in [45] (e.g.
the parallel postulate) can be given such a constructive interpretation.
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