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ABSTRACT 
 
Recent neuroscience is lacking of consistent theory and methods for understanding the 
mechanisms through which the brain orchestrate the symphony of perceptions, thoughts 
and actions. The aim of this Chapter is to contribute to a better understanding of such 
mechanisms by establishing methodological foundations of the Operational 
Architectonics framework of brain and mind functioning. The theory we offer provides a 
framework for mapping and understanding important aspects of the brain mechanisms 
that constitute perception, cognition, and eventually consciousness.  
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<We may be able one day to use brain waves as indicators 
of the beginning and end of a mental process…> 

 
Robert S. Woodworth (1938) 
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INTRODUCTION 
 
Attempts to understand systematically the brain and mind and their operations go back at 

least to the Ancient Greeks, when philosophers such as Plato and Aristotle tried to explain the 
nature of human knowledge. However, until recently such understanding is simplistic and is 
still a source of puzzlement. And it is so despite the fact that over last few decades there has 
been an explosive development of new theories regarding the brain and mind functioning and 
powerful techniques that allow studying it. Contemporary scientific knowledge about the 
brain is as follows: Simplifying, the brain is essentially a network of neurons (and glia) 
interconnected with synapses. Particular neurons are connected to inputs from which they 
receive information from the outside world. If these neurons receive a sufficiently strong 
signal, they fire, thereby affecting more neurons, and so on. It is supposed that neurons 
represent features in the input and that connections between neurons encode relational context 
among those features (Choe, 2002). Eventually, an output signal, acting on the outside world 
is generated. However, in such interpretation, the static and passive role is assigned to the 
brain.  

In reality brain does not simply represent the environment in a different format (Erdi, 
2000; Buzaki, 2004). It rather generates its own mental representations and behavior, thus 
been a functional active entity (Alexandrov, 1999; Freeman, 2000; Cariani, 2001)1. In another 
words, the living brain is in a state of permanent flux, been continuously in a change 
accordingly with its environment (external and internal). It senses the environments, 
anticipates what actions are appropriate (Freeman, 2000; Erdi, 2000), and acts accordingly 
through the sequence of operations (Alexandrov, 1999). Here the operations of perception, 
coordination-anticipation, and action in the organism become the measurements, predictive 
computations, and actions (Cariani, 2001). By probing its environment, brain extracts from 
the changing array of stimuli the regularities and covariances that assert the stability of the 
external world (Paillard, 1991). Such regularities are printed in the neural circuitry of cortical 
modules through the stabilization of co-activated synapses (see discussion in Phillips et al. 
1984). An internal representation of a stable predictable environmental framework (system of 
mental states or images) thereby emerges, which gives coherence and unity to the spatial 
relationships that link the organism to its external world. In such a way, brain, been a 
complex system, achieves a degree of epistemic autonomy relative to its surrounds (see also 
Cariani, 1994; Erdi, 2000).  

It is obvious, that both brain and mind functioning have a temporal structure (Pöppel, 
1988; Glicksohn, 2001). The time range for complex brain-mind operation is related to the 
multiple time scales. These temporal scales are (1) information processing in the brain 
(milliseconds), (2) perception of events in the real outside world (seconds and minutes), (3) 
processing of these events, and (4) realistic behavior with cognitive tasks (hours and days). In 

                                                        
1  It is not necessary or even desirable to postulate conscious experience or awareness as a basis for active 

perception. To illustrate this point we’ve borrowed example from Freeman (2000; pp. 208): “…in the study of 
conditioned reflexes an observer does not need to know, and with animals cannot know, whether the subjects 
are aware of the stimulus, only whether a contingent response occurs in conjunction with patterns of neural 
activity in the brain that are accessible to observation.” 
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general, the brain has to perform in a parallel manner many successive operations in order to 
achieve a successful result (Bak and Chialvo, 2001). 

The fundamental concept of operation is common to an organizational structure of brain 
and mind. Both the material organization that characterizes brain and the informational order 
that characterizes mind therefore necessarily involve such events as operations at their cores. 
Here the operation is stand for the process or series of acts that are limited in time 
(Krippendorff, 2002). More generally operation is the state of being in effect. This provides a 
basis for discussion of the relative complexity of operations, where there is a more complex 
operation/operational act that subsumes the simpler ones (for a more detail conceptualization, 
see Fingelkurts and Fingelkurts, 2003). In this sense, a simplified description of the operation 
of a neuron is that it processes the electric currents which arrive on its dendrites and transmits 
the resulting electrical current to other connected neurons using its axon. Such “blind” 
neurophysiological operation, at the same time, is the elemental physical operation of the 
brain (Tabl. 1). Such operations have a fully neurophysiological ontology and they are 
completely NONconscious phenomena, which according to Searle (1992) have no 
mental/subjective ontology whatsoever. More complex physical operations of the brain 
emerge from the collective activity of many neurons – neuronal assembly2. It is well 
established, that single neurons (highly distributed along the cortex) can quickly become 
associated (or dis-associated) by synchronization of their activity and giving rise to functional 
transient assemblies (Kogan and Choraian, 1977; von der Malsburg, 1999). Anatomical 
connections are not necessarily important prerequisite for such synchronization; it is rather a 
stimulus (external – physical or internal – mental) and/or a task that is important and is the 
causal source of synchrony (see Ryder and Favorov, 2001). Each of these functional 
assemblies maintains discrete complex brain operations some of which may have already 
mental/subjective ontology in addition to their neurophysiological ontology (Tabl. 1): They 
process different attributes of object or environmental scene, thus being simple cognitive 
operations (Valera et al., 2001; Fingelkurts and Fingelkurts, 2003). The joint functionally 
connected activity of many neuronal assemblies produces already complex cognitive/mental 
operations3 (Tabl. 1; see also McIntosh, 1999, 2000). Each neuronal assembly makes a 
specific contribution to the performance of complex cognitive operation, and the contribution 
is determined by the position which a particular neural assembly occupies within the richly 
connected, parallel, and distributed brain system (see Petersen and Fiez, 1993). The temporal 
synchronization of many operations of local neuronal assemblies together (Operational 
Synchrony, OS) gives rise to a new level of brain abstractness – metastable4 brain states (for 
the review, see Fingelkurts and Fingelkurts, 2004). It is suggested that these metastable brain 
states or functional Operational Modules (OM), as we name them, underlie complex brain 

                                                        
2  A neuronal assembly may be defined as a group of neurons that cooperate to perform a specific computation 

(operation) required for a specific task (Nunez, 2000). 
3  Using the orchestra metaphor of Raichle (1999, p.44), it is so as “specific members of a large orchestra 

perform together in a precise fashion to produce a symphony, a group of localized brain areas performing 
elementary operations work together to exhibit an observable human behavior.” 

4   The specific interpretation of metastability in the context of a specific theoretical model of the coordination 
dynamics of brain and behavior was developed by Kelso (1991, 1995). According to his theory metastability 
arises because of a specific symmetry breaking in the coordination dynamics. In our reinterpretation 
metastability arises in the brain because intrinsic differences in activity between the local neuronal assemblies 
are sufficiently large and they do their own job, while still retaining a tendency to be coordinated together in 
accordance with cognition and/or behavior (for the review, see Fingelkurts and Fingelkurts, 2001, 2003, 2004). 
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functions and/or mind complex operations (cognitive percepts and mental states that have 
representational nature)5. The sequence of these metastable OMs, thus, represents6 the stream 
of thoughts (Fingelkurts and Fingelkurts, 2001). It is only at this level of integration we may 
hope relate brain and mind through functional isomorphism principle (see Fingelkurts and 
Fingelkurts, 2004). 

Different parts of this very general picture of brain-mind functioning have been obtained 
from a large body of behavioral, cognitive, and physiological studies. For example, brain-
behavior experiments (Fuchs et al. 1992; Fuchs et al. 2000; Kelso et al. 1992) have 
demonstrated that neural activity picked up by the magnetoencephalogram (MEG) and 
electroencephalogram (EEG) shows spatiotemporal transitions when the operation of 
behavior (movement pattern) switches. This research indicates that the ongoing brain activity 
is directly related to the behavioral coordination dynamics (Jirsa et al., 1998). The biological 
advantages of coordination transitions are obvious: They provide a mechanism for flexibility, 
allowing the system (brain) alternative ways to coordinate itself under changing 
environmental or task conditions. Thus, behavior implies dynamical sequence of patterns. 
Such view is in accord with the concept developed by Alexandrov (1999) and introduced by 
Anokhin (1973; 1978). According to this theory of functional systems, behavior is indeed a 
continuum of discrete behavioral acts performed by an individual during life. Any behavioral 
act consists of a number of appropriate operations (Shvyrkov, 1990). The following 
behavioral act in a sequence is realized only when the previous act is achieved and evaluated. 
The evaluation process is a necessary part of the organizational architecture of the following 
behavioral act and is usually rapid, thus, being transitional. During such transitive periods the 
redundant degrees of freedom of the whole system are eliminated and the decision of what 
should be done and how to achieve the adaptive result is made (Alexandrov, 1999).  

 
Table 1. The hierarchy of brain-mind operations. 

 
 

OPERATION 
One 

neuron 
One 

neuronal 
assembly 

Several 
neuronal 

assemblies 

Many 
Neuronal 

assemblies 
Brain level simple complex more complex very complex 
Cognitive 

level 
__ simple complex very complex 

 
 
From a daily phenomenological experience we are aware also of a discrete sequence of 

cognitive events, where conscious percepts, mental images and thoughts are constant within a 
snapshot of variable duration (Mangan, 1993a; Galin, 2000; Bickle et al, 2000). In science, 
the idea of discrete cognition and consciousness was firstly considered by William James 

                                                        
5  These states could be divided into two categories: unconscious mental phenomena and conscious mental 

phenomena (for a detail, see Searle, 1992). 
6  As has been stated by Antonio and Hanna Damasio (1999), such representations are not “pictorial” objects in 

the brain as was traditionally thought; instead they are the records of the neural activity that takes place in the 
brain during particular brain operation. Such records define perceived or imagined object and/or event. 
Generally each of these records can also activate related ones. 
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(1890). Stroud (1955) was the first who start to use the notion “perceptual moment”. 
However, the notion of a “time quantum” was initially suggested by von Baer (1864) and 
important investigations in this vein have been further made by Geissler (1987; 1997). Later, 
Efron (1970) suggested that conscious cognition is temporally discontinuous and parsed into 
sensory sampling intervals or “perceptual frames.” Based on behavioral studies it was shown 
that there exists a certain minimal interstimulus interval for which two successive events are 
consistently perceived as simultaneous: one can think of them as occurring within a single 
discrete epoch (Hirsh and Sherrick, 1961; Kristofferson, 1967; Andrews et al., 1996). 

In recent years this vein of research has been extended to electrophysiology. Exactly 
cortical brain oscillations have been found to be closely related to temporal perceptual 
window (Varela et al., 1981; Gho & Varela, 1988). John (1990) proposed a mechanism, 
where a cascade of momentary perceptual frames converges on cortical areas to establish a 
steady-state perturbation (spatiotemporal signature) from baseline activity (John, 2002). This 
mechanism has received substantial support from EEG studies, including research by 
Lehmann and colleagues (Lehmann, 1971; Lehmann et al., 1987). They have demonstrated 
that the dynamic of the brain EEG field is represented by the intervals of quasistability or 
“microstates” and by sudden transitions between them (Strik and Lehmann, 1993; Pascual-
Marqui et al., 1995). Furthermore, they have shown that these microstates have been 
associated with different modes of spontaneous thoughts (Koenig and Lehmann, 1996) and 
with spontaneous visual imagery or abstract thoughts (Lehmann et al., 1998).  

 
 

Different Approaches to Study Brain-Mind Operation 
 
Many theories in brain research try to capture the complex functioning of brain-mind. 

Amongst general approaches to study how the brain and mind function, there are currently 
three major types: the dynamical approach, the symbolic approach, and the neural information 
processing (neurocomputational) approach. While symbolic and dynamical approaches are 
quite disjoint, considerable overlap exists between each of these and the neurocomputational 
view (see Cariani, 2001). 

 
 

Dynamical Approach 
 
The dynamical approach for cognition and brain activity has been adopted in believing 

that systems of differential or difference equations are the most appropriate tool for modeling 
brain behavior (Van Gelder, 1995). According to this approach cognition is explained as a 
multidimensional space of all possible thoughts and behaviors that is traversed by a path of 
thinking followed by an agent under certain environmental and internal pressures, all of 
which are captured by sets of differential equations (Van Gelder and Port, 1995). For 
dynamicists, the brain is considered as a large and complex continuous-time physical system 
that is described in terms of the dynamics of neural excitation and inhibition (Freeman and 
Barrie, 1993). The behavior of large number of microscopic neural elements creates discrete 
basins of attraction for the system that can be switched (Haken, 1999; Tsuda, 2001). These 
contingently-stable dynamical macro-states form the substrates for mental and behavioral 
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states (John, 2002). Thus, cognitive processes are not rule-governed sequences of discrete 
symbolic states, but continuous, evolving total states of dynamic systems determined by 
continuous, simultaneous and mutually determining states of the systems’ components 
(Freeman, 2000). Representation in a dynamic system is essentially information-theoretic; 
though the bearers of information are not symbols, but state variables or parameters (Beer, 
2000). There are several classes of models used within dynamical approach. One class is 
represented by the models of deterministic chaos (twist-flip maps and the Lorenz, Rössler, 
and Chua attractors). However, these models are low dimensional, stationary, autonomous, 
and essentially noise-free, so they inadequately model the brain, which fail to conform to any 
of these conditions (Freeman et al., 2001). The same is true for the attempts to measure 
correlation dimensions, Lyapunov exponents, and related numeric features of brain 
subsystems. These measures have failed to yield normative results and became less 
considered for brain modeling (Rapp, 1993). Another large class of models is represented by 
reaction-diffusion equations (chemical morphogenesis; Turing, 1952, and irreversible 
thermodynamics; Prigogine, 1980) that make “order from disorder”. These models also fail, 
especially when they model the interactions within neural networks and populations (Freeman 
et al., 2001). Furthermore, it was shown that terminal chaos (Zak, 1993) is impaired in its 
utility for representing chaotic systems (Freeman et al., 1997). Models based on 
hydrodynamics and turbulence are unsatisfactory also; there is nothing equivalent to viscosity 
or to molar convection in neurodynamics (Freeman et al., 2001). The best available models 
are those from synergetics, which described microscopic particles as being “enslaved” by a 
macroscopic “order parameter” (Haken, 1991). Generally, dynamic system theories are not be 
able in any way to explain (1) discrete higher-order thoughts and images, (2) the qualitative or 
phenomenal character of experience, and (3) how cognitive systems can be both 
representational and computational (Eliasmith, 1996). 

 
 

The Symbolic Approach 
 
In the neural and cognitive sciences, the symbol-based approach has been adopted by 

research traditions whose subject matter lends itself to orderly, rule-governed successions of 
discrete functional states: The physical systems symbol hypothesis (Newell and Simon, 
1976), language symbolic processing (Fodor, 1987; Fodor and Pylyshyn, 1988), symbolic 
artificial intelligence (Honavar, 1994). Symbol-based approach have proposed that the mind 
contains such mental representations as logical propositions, rules, concepts, images, and 
analogies, and that it uses mental operations such as deduction, search, matching, rotating, 
and retrieval. According to Fodor and Pylyshyn, in normal cognitive agents, there exist 
intrinsic connections between some thoughts and others. Thoughts (symbols) come in clumps. 
This putative fact is the systematicity of cognitive representations. The compositionality of 
representations says something about the nature of the thoughts that are intrinsically 
connected. It indicates the nature of the clumps of mental thoughts (symbols): The thoughts in 
the clumps are semantically related. For example, the thoughts in the clumps have common 
terms and predicates. Thus, the thoughts ‘John loves Mary’ and ‘Mary loves John’ are 
compositional sets of representations since they both represent ‘John,’ ‘loving,’ and ‘Mary.’ 
Perception here is seen in terms of microcomputations by discrete feature-detection elements, 
while mental operations are conceptualized in terms of computations on discrete, functional 
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symbolic states that are thought to be largely autonomous of the underlying neural 
microdynamics. However, symbolic approaches (1) does a poor job of explaining graceful 
degradation of function, holistic representation of data, spontaneous generalization, 
appreciation of context, and many other features of human intelligence and cognition, (2) 
have ignored problems related to how new symbolic primitives can be created (Piatelli-
Palmarini 1980; Schyns et al., 1998). 

 
 

The Neurocomputational Approach 
 
The neurocomputational approach includes a variety of neurophysiological and 

neurocomputational perspectives that seek to understand the neural coding – the identification 
of which aspects of neural activity convey information (Cariani, 1994; Mountcastle 1967; 
Perkell and Bullock 1968; Rieke et al. 1997; Uttal 1973; Arbib 1989; Churchland and 
Sejnowski 1992; Marr 1991; McCulloch 1965; Freeman et al., 2001). One of these 
perspectives is the connectionist model. It seems, that such models are particularly well 
matched to what we know about the brain. Indeed, the brain is a neural net, formed from 
massively many units (neurons) and their connections (synapses). Furthermore, several 
properties of neural network models suggest that connectionism may offer an especially 
faithful picture of the nature of mind. Neural networks exhibit robust flexibility in the face of 
the challenges posed by the real world. Noisy input or destruction of units causes graceful 
degradation of function. In such cases the net’s response is still appropriate, though somewhat 
less accurate. In contrast, noise and loss of circuitry in classical computers typically result in 
catastrophic failure. Neural networks are also particularly well adapted for problems that 
require the resolution of many conflicting constraints in parallel. Despite these intriguing 
features, there are some weaknesses in connectionist models that bear mentioning. First, most 
neural network research abstracts away from many interesting and possibly important features 
of the brain and mind. Second, the claim that human brains and minds work by computation 
is an empirical conjecture and might be wrong. For example, Dreyfus (1992) and Searle 
(1992) have claimed that computational approach (1) neglects the important role of emotions, 
(2) ignores the importance of consciousness, (3) disregards the significant role of physical 
environments, and (4) neglects the fact that the mind is a dynamical system, not a 
computational one. 

The debate between these three approaches is still intense and there is a fast growing 
literature built around the many issues raised by it. It is clear that neither approach described 
above is satisfactory in isolation; none of them exploit in an explicit way the actual 
physical/brain and subjective/mental operations the human brain-mind possesses in the course 
of organism behavior. The entire brain functioning is described in a somewhat one-side 
manner. There is, for example, no physiological explanation for abrupt changes in brain-mind 
states over time, and there is no means for deriving the time needed for brain-mind 
operations. When inevitable in such cases “paradoxes” appear, where human brain does not 
behave as the theory predicts, the standard response of the researchers is to alter the initial 
axioms of theories. This is apparently implausible and requires significant simplification. 
However, the operational organization of brain-mind functioning (as has been described in 
the Introduction section) may be an essential framework for cognitive neuroscience. Thus, 
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there is a need for further explanatory theories to be introduced, which would be alternative 
and superior to either of described above. 

 
 

Operational Architectonics Postulates 
 
We have suggested the Operational Architectonics (OA) framework7 (Fingelkurts and 

Fingelkurts, 2001; 2003) of brain-mind functioning, which is a metatheory and is a plausible 
illustration of the explanatory advantages of integrated view that adopts an approach which 
supposes from the outset that brain and mental processes essentially evolve over real time (a 
dynamical approach), have distinct microstates (a symbolic approach), which are the result of 
communication between neuronal assemblies (a computational approach). This framework 
explores the temporal structure of information flow and interarea interactions within the 
network of functional neuronal assemblies by examining topographic sharp transition 
processes in the scalp EEG (or MEG), on the millisecond scale. Thus, the OA theory may be 
a sufficient framework that accounts for data covered by three traditional approaches 
described above, but which explanatory capacities go beyond those of traditional theories in a 
number of respects. The OA framework, by contrast to other theories, sets out with the 
explicit aim to describe, measure and model the brain and mind operations involved in the 
complex human behavior which is governed by the individual’s brain. According to the OA 
framework, the notion of operation8 is central for perception, attention, intention, memory, 
action, and eventually consciousness (Fingelkurts and Fingelkurts, 2003).  

In constructing ОА, we have drawn on many ideas from other theoreticians especially, of 
course, those emphasizing the intimate relationship between brain and mind operations. For 
instance, we share the general perspective of Chalmers (1995) and Varela (Thompson and 
Varela, 2001) that brain/physics and mind/phenomenology are functionally linked and that it 
is only their coordination that allows for adaptive behavior. We further adopt the metastability 
notion put forward by Kelso (1991; 1995), Friston (1997; 2000), and Kaplan (1998), that is 
circumstantial for the interaction among the elementary neuronal systems in order to generate 
adaptive behavior within changing and not fully predictable environments. And we also 
follow Singer (1994; 2001) in assuming that representations of perceptual contents and action 
plans are content-specific composites of codes presumably stored in a distributed fashion, 
whereby synchronization of brain activities, going on in different brain areas, is a mechanism 
for the integration of local circuits within the large-scale anatomical structure and was 
claimed to be crucial for mental representations (Phillips and Singer, 1997). From a 
dynamical systems viewpoint, the best way to assess this large-scale level of synchronization 
is through EEG and/or MEG measures (Nunez, 2000; John, 2002; Freeman, 2003; Basar, 
2004). The main three principles utilized by OA concept are (1) the neuronal assembly notion 
suggested by Hebb (1949) and developed by von der Malsburg (Malsburg, 1999; Triesch and 
von der Malsburg, 2001), (2) the large-scale description of information processing in the 

                                                        
7  This framework takes its direct origin and is rooted in the work of Kaplan and colleagues (Kaplan, 1995, 1998; 

Kaplan et al., 1997; Kaplan & Shishkin, 2000; Kaplan et al., 2001). 
8  There is, admittedly, a strong, fallible, assumption that the system is divided into components performing 

different elementary operations (Bechtel, 2002). Petersen and Fiez (1993), for example, stress that 
neuroimaging should be seeking to identify elementary operations, not tasks. 
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brain (Nunez, 2000; John, 2002; Freeman, 2003; Basar, 2004), (3) the importance of human 
consciousness; the work by Chalmers (1995; 2002), Baars (1988; 1997), Edelman and Tononi 
(2000), Crick and Koch (2003), and Revonsuo (2000; 2001). Below we will discuss each of 
these principles in detail. 

 
 

Transient Neural Assemblies 
 
It is now well appreciated that integration of distributed brain activity involve the 

activities of large number of neurons (deCharms and Zador, 2000). However, there are 
basically two ways how to describe the mass behavior of neurons (see Hatsopoulos et al., 
1998; deCharms, 1998): (1) as by pooling together large number of essentially independent 
neuronal signals (The Independent-Coding Hypothesis), or (2) through the essential 
coordination of neuronal elements into a single signal, as in a symphony (The Coordinated-
Coding Hypothesis). According to the independent coding framework each cortical neuron 
represents a separate signal. Although many neurons may be involved in coding a particular 
object, the key postulate of the independent-coding hypothesis is that all of the information 
that can be obtained from any one neuron can be derived from that individual neuron alone, 
without reference to the activities of others (Georgopoulos, 1990; Schwartz, 1994a,b). It has 
been proposed that such independent signals may be overlapping, noisy, or redundant and 
may need to be pooled or averaged over large populations to become clear, but the signal 
carried by each neuron is carried independently (see deCharms and Zador, 2000). 

The coordinated-coding hypothesis, on the contrary, suggests that the dynamic patterns of 
cooperative activity of neurons cannot be predicted from knowledge of the activity patterns of 
any single class of neurons, or individual neurons (Mountcastle, 1998). According to this 
hypothesis the coordinated information could be extracted from the relations between 
multiple neurons in a population, whereby these relations are reflected in the neural 
synchrony (Gray et al., 1989; Singer and Gray, 1995). Indeed, it has been shown that changes 
in such synchrony (a) are stimulus frequency specific, (b) follow the time course of ongoing 
stimuli, and (c) are systematically mapped across the cortical surface (deCharms and 
Merzenich, 1996). Here the emphasis is put on the functional brain units or assemblies (von 
der Malsburg, 1999) executing the basic elemental operations of informational processing 
(Finger, 1994; McIntosh, 1999; Varela et al., 2001; Crick and Koch, 2003).  

Before moving further, we need to be clear about how elementary the operations in 
question might be (Bechtel, 2002). In a broad sense, basic physics defines elementary 
operations of all phenomena in nature in terms of quantum mechanics. However, this is 
typically not necessarily the right level at which we are searching the basic operations that 
comprise the explanation of a cognitive phenomenon. To illustrate this point we have 
borrowed example from the Bechtel (2002; p. 233): “To explain how a car generates 
locomotion we do not jump immediately to quantum mechanics. Rather, we appeal to parts at 
one level of decomposition down from the whole car – the engine, drive shaft, axles, etc. 
Each of them makes a contribution which we can understand in light of the goal of generating 
locomotion – transforming chemical energy to mechanical energy, etc.” Similarly, if we are 
interested in a quest to find the brain operations that comprise the elemental cognitive 
operations, we should define the appropriate level of brain description.  
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The individual neurons are seen as imperfect and unreliable pulse generators, partly due 
to thermal fluctuations in the membranes of their trigger zones, and partly due to their 
biochemical nature (Freeman, 2000). Moreover, most of the activity of single neurons is 
expected to be determined by the activity of their peers and only the small part of such 
activity is determined by the features of the environment (Buzaki, 2004). It has been also 
stated that individual neuronal activity is only weakly correlated with cognition and behavior. 
Indeed, the response properties of individual neurons tend to vary only little in awake, 
sleeping, and anesthetized brains, meaning that the tuned responses of individual neurons are 
alone not sufficient to support cognition and consciousness in particular (Singer, 2001). 
Revonsuo in his analytic paper also comes to the same conclusion: “…it appears that the 
records of single-cell firing rates are not explanatorily adequate for the discovery of the 
phenomenal level, for we have no idea how the firing rate of a neuron is supposed to 
contribute to the subject’s phenomenology and, consequently, we have no clue how to 
reconstruct any aspect of the subject’s phenomenology from the firing rate data alone.” 
(Revonsuo, 2001; p. 12). When we record activity from the single cells, we observe brain 
activity at a very low level of organization – we trace the elemental brain physical operations 
– and such observations never allow the visualization of the phenomenon (cognition or mind) 
we are interested in (for a detail discussion, see Revonsuo, 2001). Thus, the level of the 
activity of individual neurons (elemental brain physical operations) is most likely an 
inappropriate level of brain organization for realization of cognition and mind. However, 
there must be some level of organization in the brain that literally resembles or is isomorphic 
to cognition, that is to say cognition (or mind) itself. So, the appropriate level of brain 
description should in some way allow reconstruction of the structure (or at least some aspects 
of it) and/or content of phenomenal level of organization experienced by the subject. 
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Figure 1. Schematic illustration of operational architectonics of brain functioning. A, Microscopic 
level of individual neurons. B, Mesoscopic level of transient neuronal assemblies. C, Macroscopic level 
of operational modules (OMs). EPSP/IPSP,  excitatory/inhibitory postsynaptic potential. RTP, rapid 
transition periods in electromagnetic field. Figure is modified from Fingelkurts et al., 2005, Progress in 
Neuropsychopharmacology & Biological Psychiatry ©. 

 
The elemental cognitive brain operations (perception, object feature representation, 

recognition, and so on) appear to require some kind of “devices” that bridge distances and 
allow for the fast between-neuron exchange of information. In another words, information 
represented in some class of neurons has to be bound9 (Fig. 1 A). Neuronal assemblies are 
perfectly suited to fit this purpose10. Nowadays, in the result of the paradigm change, it seems 
clear that the coordinated-coding framework, or a theory of neural assemblies plays more and 
more central role in cognitive sciences (Basar, 2004). Here, the activity of any individual 
neuron is informational only insofar as it contributes to the overall statistics of the assembly 
of which it is a member (John, 2002). For example, hippocampal pyramidal cells during rest 
and sleep produce strongly coherent ensemble bursts believed to be critical in transferring 
information to the neocortex. Although robust at the assembly level, no amount of sequential 
single-cell recording could reveal such cooperative patterns (Buzsaki et al., 1992). Thus, it 
has been claimed that the cell assembly theory (which describes the intermediate-level 
organization of the brain) seems the only plausible concept that bridges the gap between 
neural and mental dynamics11 (Palm, 1990; Eichenbaum, 1993; Pulvermueller et al., 1994; 
Mountcastle, 1998; von der Malsburg, 1999; Varela et al., 2001; Basar, 2004). According to 
this theory, higher brain functions (cognition) are based on processing units called cell 
assemblies (Pulvermueller et al., 1994; Crick and Koch, 2003). Such neuronal assemblies, 
thus, is thought to serve as the functional elements of brain mental activity – elemental 
cognitive operations12 (Fingelkurts and Fingelkurts, 2003; see also Basar, 2004). If cell 

                                                        
9  The communication of neurons within the assembly is achieved through the synchronous operations executed 

by each neuron. Such synchronization occurs among the neurons which tune preferentially to a particular 
features of their sensory environments and are predictably related to other such features (Phillips and Singer, 
1997). It is supposed that this process relay on self-organization (Erdi and Barna,  1984; Singer, 2001) where 
the crucial role is played by dendrites (Ryder and Favorov, 2001). 

10  Neuronal assemblies allow also overcoming the unavoidable unreliability of individual neurons (see above). 
By having numerous elements in parallel, a consensus can be found by averaging among them in order to 
extract a clean signal – this solution is very well known by engineers (Freeman, 2000). 

11  Only observing statistically representative groups of the neurons can reveal such emergent phenomena as 
cognition. 

12  This view is alternative to both localizationist and holistic approaches (Pulvermueller, 1999). Localizationists 
would assume that small cortical areas are fully capable of performing complex cognitive operations. A 
localizationist would, for instance, propose that a small brain area is the locus of word comprehension (Broca 
1861; Lichtheim 1885; Wernicke 1874). According to this view, each complex cognitive operation is restricted 
to one area – that is, no other areas are assumed to contribute to this specific process. In contrast, a holistic 
approach would imply that the entire cortex exhibits equipotentiality with regard to all cognitive operations 
and that all cortical areas can contribute to sufficiently complex mental processes (for discussion see an 
overview, Deacon 1989). The neuronal assembly theory is in sharp contrast to both of these views 
(Pulvermueller, 1999). Cell assemblies with defined cortical topographies are assumed to form the 
neurobiological representations of elemental cognitive operations, whereby complex cognitive operations are 
represented by the joint activity of many neuronal assemblies at another time scale (Fingelkurts and 
Fingelkurts, 2003). To illustrate this, lets consider the following example: The elemental cognitive operation 
lasts some short period T. Then at times shorter than T one should speak about cognitive (or brain) microstate, 
whereas at times greater than T one observes a succession of microstates (or a state history). The combination 



Andrew A. Fingelkurts and Alexander A. Fingelkurts 12

assemblies are the basic units of cognition, they must become active when cognitive 
processes take place. It is known from animal experiments that synchrony (is taken as an 
indicator of reverberating activity in cell assemblies, see Merzenich and deCharms, 1996) of 
neuronal activity reflects gestalt criteria, for example the fact that two objects move together 
(Singer 1995; Singer and Gray 1995). Further support for the role of neuronal assemblies in 
cognitive processing comes from studies of electrocortical responses to different memory 
stages (Fingelkurts et al., 2003a). Moreover, gestalt-like figures such as Kanizsa’s triangle 
have led to stronger EEG responses when compared to physically similar stimuli that are not 
perceived as a coherent gestalt (Tallon et al., 1995; Tallon-Baudry et al., 1996). It is well 
documented that the simplest inputs such as single words lead to activation of broad patterns 
in brain scans. There is no way to accept that the input of a single word would activate such a 
large fraction of the neurons unless the group activation process is the normal response of the 
brain (Epstein, 1999). Even more, there is known fact that seeing only the first few letters of a 
word can create a whole word in our minds; it also shows that a neuronal assembly can be 
normally activated by those first inputs (Epstein, 1999). It has been even suggested that if 
cognitive processing does not take place, neuronal assemblies do not become active13 
(Pulvermueller et al., 1994).  

 
 

Hebbian Neuronal Assemblies 
 
Early attempts to build the neuronal assembly theory can be traced back to Donald Hebb, 

who in 1949 proposed that the coactivation of connected cells would result in a modification 
of weights so that when the presynaptic cell fires, the probability of the postsynaptic cell 
firing is increased14 (Hebb, 1949). This implying that group of neurons that have the tendency 
to fire together will become strengthened as an assembly. Such principle is known as “the 
principle of cooperativity”. Another principle was suggested later – it is “the correlation 
learning”: Connection strength is not only modified by coincident activity, it also changes if 
only one of two connected neurons is active while the other one is inactive (Pulvermueller, 
1999). These two principles have to have two important functional consequences: (1) If a 
sufficiently large number of the assembly neurons are stimulated by the input (either through 
sensory input or by internal image), activity will spread to additional assembly members and, 
finally, the entire assembly will be active. This explosion-like process has been called ignition 
of the assembly (Braitenberg 1978). (2) After an assembly has ignited, activity will not stop 
immediately (because of fatigue or regulation processes), but the strong connections within 
the assembly will allow activity for some time (Pulvermueller, 1999). Hebb’s postulates have 
been extended into various forms of correlation-based rules and intensively used in many 

                                                                                                                                                       
of local microstates together will form cognitive (or brain) macrostate that will last some time Ti and will have 
its own history at times greater than Ti.  

13  More precisely, cell assemblies may be stimulated and, therefore, become slightly active, but no full 
activation, no ignition, should take place. 

14  This view corresponds with one of the basic ideas of the Russian neurophysiological school: In the first third 
of previous century Vvedensky (1906) and Ukhtomsky (1935) proposed that connections between nervous 
structures are promoted through the correspondence in their frequency characteristics, that is, in equalizing 
their excitation cycle rate. This is known as the “functional lability” parameter (Ivanitsky and Nikolaev, 1999). 
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learning networks and in the analysis of activity-driven refinement of developing circuits15 
(Sejnowski and Tesauro, 1989; Brown et al., 1990; see also review by Bi and Poo, 2001).  

Even though the explanatory power of neuronal assembly theory is very high and it is the 
right level of brain organization for the cognition, there is a major problem with using 
Hebbian cell assemblies to explain perceptual and cognitive processes. For one thing, they are 
too slow and rely on learning by repetition at a low-level (single neurons) organization of the 
brain. However, a great part of our cognition and perceptions are fast, unique, and singular in 
a veritable sense (Bauer and Dicke, 1997). For example, we can perceive individual objects 
that we see only once, and never again, within a fraction of a second. The coherency of 
perceptual and cognitive states is achieved rapidly and effortlessly (Edelman and Tononi, 
2000). It is obvious that neuronal representations of such objects and related cognitive 
processes cannot be based on slow anatomical cell assemblies (Bauer and Dicke, 1997). 
Instead, functional transient neuronal assemblies may be appropriate for the purpose since 
they are fast and do not necessarily depend on the anatomical connections16 (von der 
Malsburg, 1999; see also Fingelkurts et al., 2005a). 

The other general problem with Hebbian neuronal assemblies is that they have no flexible 
means of constructing higher-level operations by combining more elementary operations 
(Fodor and Pylyshin, 1988). It is known as “the binding problem” (von der Malsburg, 1981). 
To illustrate this, lets consider the following classical example: Imagine that two objects need 
to be activated/represented in the same mental state in order to be compared. Such 
coactivation would inevitably lead to what has been named “superposition catastrophe”, 
whereby two neuronal assemblies according to the classical concept will merge into one, and 
there will be no possibility to express the information needed to subdivide the composite state 
into its components (von der Malsburg, 1999). So far, the only reliable solution lies in the fast 
transient neuronal assemblies which (being the discrete functional units17) are capable of 
combinatorial mechanisms through the temporal synchrony of their total activities (Fig. 1 B). 
As a result they may form the complex units which have explicit structure on the basis of 
which elements of this structure can be compared, recognized, decomposed, and further 
combined to build new or even more complex structures (Fig. 1 C; see also Fingelkurts and 
Fingelkurts, 2003). This is the neural architecture that has the capacity for flexible learning 
and self-organization (for the review, see Fingelkurts and Fingelkurts, 2004).  

 
 

                                                        
15  An exciting application of modified Hebbian rules is in a new type of neural network models – the “pulsed 

neural networks” (Maass and Bishop, 1999) that use precise timing of individual spikes to encode information. 
Such temporal coding may enable construction of more versatile and powerful networks because it provides 
larger coding capacity and easier handling of temporal information (Bi and Poo, 2001). 

16  The assembly of neurons which are connected by functional connectivity has been also called “dynamical cell 
assembly” (Fujii et al., 1996). The important point to note is that neurons composing a dynamical neural 
assembly need not be fixed; that is to say, a set of neurons joining the assembly may alter in time (Watanabe et 
al., 2001). 

17  Cell-assembly size is currently estimated to lie between several hundred and about a million neurons (Palm, 
1982; 1993). It is relevant to point out here that the boundary between neuronal assemblies is necessary fuzzy. 
And it is not a problem, since there will be some neurons with high correlations and others whose correlation 
with these “core neurons” are smaller (Pulvermueller, 1999). In other words, some neurons will always 
become active together when a certain input pattern is provided, others may only be recruited in some cases, 
depending, for example, on the neuronal sets activated in the past (Milner, 1957). 
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Transient Functional Neuronal Assemblies 
 
Katchalsky (1974) was the first who start to study the self-organized behavior of fast cell 

assemblies. The distributed interactions among neurons that arise in neuronal cell assemblies 
“enslave” the mass of cortical neurons (Haken, 1999). More precisely, with convergence, 
each receiving neuron sums the dendritic currents triggered by neurons broadly scattered over 
the transmitting cortex18 (Freeman, 1992). The only activity that survives this spatial 
integration is that which has the same instantaneous frequency and phase over the spatial 
extent of the integration19, whereas the stimulus-locked activity that is not spatially coherent 
is washed away (Freeman, 2000). The activity that has this property is the common carrier 
wave generated by the cortical interaction, which conveys the amplitude modulation patterns. 
The consequence is that the raw sense data, which can be regarded as a representation of each 
particular stimulus, is “deleted” by the brain as noise, and the self-organized amplitude 
modulation pattern is accepted as the signal, that is, the meaning for the individual of the class 
of the particular stimulus (Freeman, 2000). By tuning or choosing delays and connection 
weights, functional neural assemblies can be constructed that are differentially sensitive to 
particular time patterns in their inputs. Assemblies can also be formed that emit particular 
temporal patterns when activated (John and Schwartz, 1978). Thus, the most significant 
property of such functional ensembles is the capacity for undergoing rapid and repeated 
global state changes (Freeman, 2000a,b). Formation of new neural assemblies is then a means 
by which the brain can adaptively construct what are in effect new measuring “devices” that 
make new distinctions on an internal milieu that is richly coupled to the external world 
(Cariani, 2001). 

The activity of these neuronal assemblies represents the mesoscopic level of brain 
organization (the term has been introduced by Freeman in 1992; see also Freeman, 2000c; 
Freeman et al., 2001). Mesoscopic effects operating at spatial and temporal scales of 1 cm and 
100 ms mediate between the two extremes of single neurons and the major lobes of the 
forebrain. They correspond in size to Brodmann’s areas and in duration to psychophysical 
events that compose perceptions. Thus, mesoscopic effects provide a link between extreme 
local fragmentation and global uniformity (Fig. 1 B). They change continually in space and 
time, requiring a very close relationship between dynamic events, e.g. amplitude modulation 
of local field potentials, and the media through which the propagation occurs (Freeman, 1992; 
Skarda and Freeman, 1987). 

There is intensive research of inherent relation between local field potentials produced by 
neuronal assemblies20 and cognitive operations. Thus, it has been demonstrated that local 
field potentials change in motor (Vaadia et al., 1995; Donoghue et al., 1998; Lee, 2003) and 
sensory (de Oliveira et al., 1997; Super et al., 2003) cortices during periods in which the 

                                                        
18  This is how brains do spatial ensemble averaging. There is no need to store the traces of activity. 
19  It is a set of emergent properties of abundant amounts of elements in assembly that is important. In this sense, 

the representation of information by neuronal assemblies is ergodic; the same as the generation of pressure by 
water molecules in an enclosed volume (John, 2001). Because of this, the representation of information by 
neuronal assemblies is also robust, meaning that damage to a single cell (or cell mortality) will not have a 
catastrophic effect on the representation of information. Additionally, neuronal assemblies have other key 
important properties, such as mechanism for noise removal, short-term memory and the instantiation of 
complex, nonlinear functions (Pouget et al., 2000). 

20  Oscillations in the local field potentials are normally taken as evidence of coherent oscillations among the 
group of neurons contributing to the field potential (Averbeck and Lee, 2004). 
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animal is anticipating behaviorally relevant events. Similarly, group of neurons in motor 
cortical areas display coherent oscillations during demanding tasks, or task epochs 
presumably requiring cognitive effort (Murthy and Fetz, 1996). Other studies have shown that 
synchrony (Steinmetz et al., 2000) and oscillations in the local field potentials (Fries et al., 
2001) can be modulated by attention to a particular location in the visual field or to a 
particular sensory modality. These experiments suggest that coherent oscillations might be 
involved in the realization of cognitive operations, because they appear when the subject is 
preparing to process specific sensory stimuli, or is selectively processing a subset of the 
available sensory stimuli. Some of the more compelling data in support of this idea come 
from analyses of error trials. Three studies have shown that, when subjects do not execute 
correct responses, coherent oscillations are reduced (Woelbern et al. 2002; Lee, 2003; Super 
et al., 2003), suggesting that the absence of coherent oscillations reflects a failure in the flow 
of information. Generally speaking, “the transitions between walking and running, speaking 
and swallowing, sleeping and waking, fast changes of objects and scenes in the visual field 
and at last the staccato flow of thoughts and mental images are all realized by transient 
functional neuronal assemblies” (Freeman et al., 2001). 

In conclusion, we should stress that functional neural cell assemblies, though powerful by 
themselves, are also ideal building blocks for larger cognitive structures or complex cognitive 
operations (see Fingelkurts and Fingelkurts, 2001; 2003; see also Kaplan et al. 1990; Holland 
1998). 

 
 

Operational Synchrony and Operational Modules 
 
The recombination of subsets of activity of neuronal assemblies (elemental operations as 

functional building blocks) into larger spatial-temporal structures yields a vast number of 
potential combinations (Fig. 1 C; see also Fingelkurts and Fingelkurts, 2004), thus providing 
the base for a practically infinite number of mental states and thoughts of different complexity 
(Fingelkurts and Fingelkurts, 2003). Just as functional connectivity (or Operational 
Synchrony, Fingelkurts and Fingelkurts, 2001) forms transient neuronal assemblies, the same 
principal of functional connectivity can be used to create an associative links between two or 
more of such assemblies21 (Fingelkurts et al., 2005a). Neurophysiologically, each local 
pattern that appears as a result of neuronal assembly activity depends on its interactions with 
the others to which it is functionally connected (Mumford, 1994). Because the interactions 
between cell assemblies are inevitably mutual, the situation is not that of one assembly 
imposing its pattern on another, but rather of multiple assemblies acting to constrain the 
pattern in each other (Bressler, 1999). Pattern constraint is a potentially powerful mechanism 

                                                        
21  This is possible just because the mesoscopic patterns of brain activity produced by different neural assemblies 

all have the same “format” (Freeman, 2000c). This indicates that the several such patterns (which represent 
elemental cognitive operations) can be as easily integrated with each other, leading to the formation of a more 
complex spatial-temporal pattern – the operational module (OM) that represents complex cognitive operation 
(Fingelkurts and Fingelkurts, 2001). Thus, functionally, the outcome of coincident operations is an OM rather 
than larger ensemble of particular neurons firing in synchrony (Cariani, 1997). Here the time dimension is 
very important – time structure is the organizing currency of the brain-mind system. Time structure is 
preserved within OM in a sparse and distributed form. Information processing in such OM would be 
statistically-mechanical in nature, implementing temporal binding of simpler operations on the all-order 
interval statistics of a larger operation and consequently a larger OM (Fingelkurts and Fingelkurts, 2003). 
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for the formation of novel complex dynamic coordination patterns in large-scale networks. 
Indeed, different brain operations executed by spatially distant neuronal assembles tend to be 
synchronized if they happens to be at the same time, thus related to the same 
perceptual/cognitive act (Cleeremans, 2002). Hence, the resultant spatial-temporal pattern or 
Operational Module (OM) is the emergent product of the synchronized simple operations of a 
set of strongly associated neuronal assemblies (Fig. 1 C); and these OMs represent the 
realization of cognitive complex macrooperations22. Here the notion of operational space-
time should be introduced. It is not easy to grasp exactly what we need to explain, however, 
such notion is important for our conceptualization. Intuitively, the operational space-time 
(OST) is the abstract space and time which is “constructed” by the brain each time when the 
particular metastable OM emerges. Formally, the OST means that for a particular complex 
operation, the spatial distribution of the neuronal assemblies’ locations with synchronous 
activity at repetitive instants of time (beginnings and ends of simple operations) builds the 
OM. These distributed locations of neuronal assemblies are discrete and their proximity or the 
activity in the in-between area, delimited by the known locations, is not considered in the 
definition (only the exact locations are relevant). Also, between the moments in time that 
particular locations of the neuronal assemblies synchronize, there can be smaller subset(s) of 
these locations synchronized between themselves or with other neural locations, though these 
do not relate to the same space-time of the same OM. The sketch of this general idea is 
presented in figure 2. 
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22  Similar view may be found in Bressler (1999; 2002): Local neuronal assemblies are considered to serve as 

associative memories for specific elementary types of information. But each local associative memory is 
coupled with a number of others according to the topological ordering of functional connectivity. Thus, 
cognitive structure depends not only on local stores of information, but also on heightened probabilities of 
conjunction among domains of knowledge stored in separate cortical areas. Context for processing in each 
neuronal assembly, hence, is provided by constraints imposed by the states of the other assemblies with which 
it interacts. Of course, not every OM constitutes a mental state or thought. Moreover, even in those, which do, 
the large amount of purely physical brain processes contribute to the construction of OM. However, from the 
level of OM there is no access to the original raw data anymore (Fingelkurts and Fingelkurts, 2003). 
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Figure 2. Operational module (OM) and operational space-time (OST). Each OM exists in the 
OST, which is “blind” to other possible time and space scales present simultaneously in the brain 
system. In the other words, all neural assemblies that do not contribute to a particular OM are 
temporarily and spatially excluded from the OST. F3, is the left frontal area; P4, is the right parietal 
area; and O1, is the left occipital area. As an example, only neural assemblies in these areas (operational 
space) synchronize their operations on a particular (operational) time-scale.   

 
The communication of activity from microscopic single neurons to feature-specific neural 

assemblies and yet to the large-scale distributed networks, been a pressing neurocognitive 
problem, may be elucidated through the present framework. This framework is in agreement 
with the Breakspear and Stam (2005) conceptualization of the brain as a constrained 
multiscale system in which emergent dynamics at any scale have a critical influence on the 
activity in larger and smaller scale structures. Thus, the “transition” of the same neural 
assembly into the new OM, in accordance with participation in the realization of another 
complex cognitive operation, must depend on the ability of this neural assembly to adapt to 
the main variables of the new OM. Thus, discrete parts of the neural networks (or assemblies) 
may gain another functional meaning when they are recruited by other OM and, therefore 
take part in realization of another perceptual or cognitive act (Fingelkurts, 1998; Fingelkurts 
and Fingelkurts, 2001; Fingelkurts et al., 2003a,b). In this process, some local networks 
(assemblies) in the large-scale network become temporarily coordinated (formation of OM), 
while others are temporarily excluded from participation in the coordination state. 
Furthermore, the spatial activity pattern within each coordinated local neural assembly, 
representing its contribution to the large-scale pattern (indexed as OM), becomes temporarily 
stabilized, thus implementing the metastability principle (Kelso, 1995; Kaplan, 1998; for the 
recent review, see Fingelkurts and Fingelkurts, 2004). 

The importance of such large-scale operational synchrony for the cognition and mind was 
shown experimentally. For example, it has been demonstrated that functionally distinct 
cortical regions might be preferentially operationally synchronized and involved in different 
stages of memory processing such as encoding, retrieval, and retention (for details, see 
Kaplan and Shishkin 2000; Fingelkurts et al., 2003a). This was expressed through a gradual 
increase in operational synchrony process together with a growth of cognitive loading23 
(Kaplan et al., 1997; Fingelkurts et al., 2003a). Thus, the principle finding was the existence 
of systematic specific functional combinations among cortical areas (OMs), which changed 
significantly along with the memory stages shift (Fingelkurts et al., 2003a). These findings 
are also in agreement with the works of McIntosh (1999), Fuster (1997), and Basar et al. 
(2001). In another study, using a robust illusion known as the McGurk effect (McGurk and 
MacDonald, 1976), it was demonstrated that the apparent synthesis of information from 
different modalities might be achieved through the process of operational synchrony between 
modality-specific and non-specific cortical areas (for a detail discussion, see Fingelkurts et 
al., 2003b). The temporal synchronization of cortical operations processing unimodal stimuli 
at different cortical sites reveals the importance of temporal features of auditory and visual 
stimuli for audio-visual speech integration. The main principle lies in the systematic moment-
by-moment synchronization of the operations produced by different neural assemblies (Fig. 1) 

                                                        
23  In contrast, subjects who failed to memorize the task, showed the negative process of operational synchrony, 

meaning that the particular brain areas actively unsynchronized their operations (Fingelkurts, 1998). 
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within the large-scale networks (Kaplan and Shishkin 2000; Bressler and Kelso, 2001). Thus, 
the well-timed spatiotemporal synchronization patterns (indexed by OMs) related to audio-
visual integration were obtained. The subjects, who did not display the McGurk illusion 
(meaning that they lacked conscious multi-sensory integration), in contrast, demonstrated 
significant uncoupling24 (negative values of operational synchrony) of particular brain areas 
(Fingelkurts et al., 2003b). These findings are in keeping with recent studies (for review, see 
Calvert, 2001), suggesting that multisensory integration is a process that not only facilitates 
detection of the multisensory stimuli by amplification of the unimodal sensory signals, but 
also combines these signals to form new and emergent multimodal representational percepts 
(O’Hare, 1991). Currently, it has been demonstrated that psychotropic drugs (in particular 
benzodiazepines) may significantly modify OMs and alter metastability of brain activity in 
healthy subjects. (Fingelkurts et al., 2004a,b). 

Generally, OM has a more complex structure than operations which constitute it. OM is a 
gross abstraction of the brain state (Fig. 1 and Fig. 2), where much of brain state information 
is not transparent for the level of subjective phenomenology25 (for detail conceptualization 
see Fingelkurts and Fingelkurts, 2003; see also Arbib, 2001). Such interpretation was already 
established by early philosopher Thomas Aquinas (reprint, 1952) who concluded that single 
events in the material world are not knowable, and that knowledge comes only through 
abstraction and generalization from the “phantasmata” of raw sensory impacts.  

 
 

Properties of Operational Modules 
 
OMs have several unique properties important for cognitive and mental activity of the 

brain. First is the property of associativity, by which the activation of a particular pattern in 
one local assembly co-activates linked patterns in other local assemblies (Rauschecker, 1995). 
This capacity is essential for joining together related information from different knowledge 
(or sensory) domains, such as in the association of names and visual images or auditory and 
visual information. However, this association is not merely a conditioning of one pattern by 
another, since it occurs within the overall framework of cognitive structures (Deese, 1970). 
The co-activation of patterns in different cortical areas is constrained by the patterns of 
connectivity formed between those areas. In short, association always occurs within the 
context of cognitive structure (Bressler, 2002). 

Second important property of OMs is dispositionality, a characteristic of cortical function 
that has been extensively discussed by Damasio (1994). What this means in the present 
context is that the activity patterns of some local assemblies serve a dispositional role in 
directing the coordination of other local assemblies. Local dispositional networks interact in 
the same way as local sensory or motor networks (Bressler, 2002), but the information they 
provide serves to specify the composition of the large-scale coordination pattern – OM in our 

                                                        
24  Note, that the suppression of interactions between cortical areas was achieved not by inhibition responses, but 

rather by a sufficient degree of temporal dis-coordination of operations (see Fingelkurts et al., 2004a,b). 
25  Our OMs resembles Damasio’s (2000) second-order neural patterns in several respects: It is an representation 

of perceived (or imagined) object (or scene) which is formed through an unfolding succession of signals 
related to this object/scene; it arises transiently out of interactions among a selected several neuronal 
assemblies; several such patterns can form composite and integrated pattern which would give rise to a new 
experience (we may call them the third-order neural patterns).  
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interpretation. The recruitment of a dispositional neural assembly into an OM can thus serve 
to recruit additional sets of specific local assemblies. Each recruited set may contain other 
dispositional networks with the potential for recruiting even further sets. In this way the 
cortex may evolve through a series of large-scale coordination states. Thus, dispositional 
networks may significantly contribute to the ability of the cortex to manifest a temporal 
progression of logically connected mental/cognitive states (Bressler, 2002). Dispositional 
networks in the cortex may exist at different hierarchical levels above the primary sensory 
and motor areas, and different areas may potentially contribute to the orderly evolution of the 
cognitive states. 

Another advantageous property of OM is the intermittency. It is the degree of 
coordination of the component parts over time, when this degree can abruptly increase 
(Bressler, 2002). Indeed, distributed sets of cortical areas may remain uncoordinated for some 
time, and then, with a change in cognitive state, suddenly become coordinated through a rapid 
increase in operational synchrony (Fingelkurts et al., 2003a,b). 

The last and the most important property of OMs is their metastability (Kelso, 1991, 
1995; Kaplan, 1998; for the resent review see Fingelkurts and Fingelkurts, 2004). 
Metastability may allow the cortex to enter into many different states of coordination of its 
constituent areas without becoming trapped in any one state (Bressler, 2002). More precisely, 
in a metastable regime of brain dynamics, the interdependence of separate areas is balanced 
between integrating and segregating activities (Kelso, 1991, 1995; Friston, 1997; Kaplan, 
1998). This property provides the cortical system with the flexibility necessary to rapidly 
adapt at both large-scale and local levels to changing contingencies required for a cognitive 
function. This flexibility may be advantageous for cognition if it allows the cortex to carry out 
a variety of tasks simply by changing the coordination states of its networks (Bressler and 
Kelso, 2001). Thus, different kinds of spatial-temporal patterns (OMs) can be present/sent 
over the same transmission lines at different times or even interleaved together without being 
functionally confused (Fingelkurts and Fingelkurts, 2003). 

This raises the possibility that the structure of functional organization of informational 
process in the brain is isomorphic to the operational structure of the cognition, and on a more 
abstract level, to the phenomenological structure of awareness and consciousness (Fingelkurts 
and Fingelkurts, 2001). Indeed, one can see that the structure of electrical brain field, 
structure of cognition and the phenomenal structure of consciousness have the same 
construction: the succession of discrete and relatively stable periods (OMs, cognitive acts or 
thoughts) separated by rapid transitive processes (abrupt changes of OMs, cognitive acts or 
thoughts)26. In this interpretation, ordered sequences of OMs generated from within the brain 
system would have the character of successions of mental symbols, and reformulating 
Bressler (2002) these would be experienced as thoughts. This phenomenon is usually referred 
as a “stream of thoughts”27 (James, 1890; for resent developments see Mangan, 1993a,b; 
Chafe, 1994; Galin, 1994, 2000). Further, the OM’s patterns that are related to goal-states 
would then have the character of system imperatives to adjust behavior, and thus would be 
experienced as desires and pains; and actions would be experienced through their effects on 
perceptions, sensory, and hedonic states (Bressler, 2002). 

                                                        
26  For similar ideas see also O'Brien and Opie, 1999a,b. 
27  According to this metaphor, consciousness is always changing, but it presents us with a series of substantive 

thoughts that are themselves momentarily stable and unified (James, 1890). 
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In the framework of operational architectonics (OA) framework, OMs (being by 
themselves the result of synchronized operations going on in different brain structures) could 
be also operationally synchronized28 between each other (on the new time scale), thus 
forming more abstract and more complex OM that constitutes new integrated subjective 
experience (Fingelkurts and Fingelkurts, 2003; this idea coheres with O'Brien and Opie, 
1999b). When two or more active OMs are cross-correlated and synchronized through 
continuous operational synchrony, a further complex OM29 arises that maps these two (or 
more) independent simple OMs to each other within the operational time, which in its own 
turn is mapped onto real time. Different properties of the perceived scene thus can be 
integrated in order to form an operational whole, which now has higher level of 
abstractness30. The opposite process is also possible when complex OM could be decomposed 
to simpler OMs, whereas each of which would give rise to a distant subjective experience. 
However, the price for this decomposition is narrowly focused attention and consequently the 
focused mental (conscious) state (von der Malsburg, 1997). Thus, attention could be the 
possible mechanism that guides decomposition or construction of OMs of different 
complexity31 (for detail conceptualization, see Fingelkurts and Fingelkurts, 2003). 

 
 
 

Practical Implementation 
 
In the light of our discussion, what is the appropriate method for functional brain 

imaging, considering that this method should have the capability of revealing the mesoscopic 
level of brain organization, which is directly involved (as it has been discussed earlier) in the 
realization of cognition and, eventually, consciousness? As it was already mentioned above, 
the time-scale of mesoscopic level (the level of neuronal assemblies) is of milliseconds, while 
the spatial resolution is about a centimeter. Electroencephalography (EEG) and 
magnetoencephalography (MEG) are the only methods that satisfy simalteneously to both 
these time and space scales (Freeman et al., 2001). EEG/MEG detect fast changes in the gross 
synchronous activity of thousands of cells in selected areas on the cortical surface, thus 
collecting information from the relevant level of brain organization (Revonsuo, 2001). 
However, classical approaches to EEG/MEG analysis reveal only limited knowledge of what 
is going at the level of neural assemblies (Fingelkurts et al., 2005a). The main reason for that 
is that the studies are designed in a way that they avoid the temporal structure of the 
phenomenon under investigation. Recordings of brain activity are generally averaged over 
hundreds of repeated trials or more, in order to eliminate fluctuations in ongoing activity (the 
“noise”) that are not correlated with stimulus presentation (for a critical discussion see 
Fingelkurts et al., 2002; Fingelkurts et al, 2003c). Thus, an additional question arises: Which 

                                                        
28  This is the self-organizing dynamic process (for the review see Fingelkurts and Fingelkurts, 2001). 
29  It is important to stress here, that complex OM does not have instructive power upon simpler OMs, it is just a 

new cognitive state in its own right. 
30  The property of abstractness gives particular advantages for adaptive behavior of the organism: If only a few 

signals from the relevant objects are available, categorical (abstracted) knowledge can allow for an adequate 
response to a wide range of stimuli and thus permit adaptive behavior (Edelman, 1987). 

31  See also Taylor (2002) for the view that consciousness can be regarded as created by suitably specific 
processes arising from the movement of attention. 



Mapping of Brain Operational Architectonics 21

of known EEG/MEG analysis approaches can derive the information about operations 
(discrete events) of neural assemblies and estimate the inherent temporal/dynamical 
correlations (functional connectivity) among them?  

 
 

Estimation of Neuronal Assemblies 
 
Neurons that constitute neural assemblies, sum their electrical fields in passing across the 

extracellular resistance, giving rise to extraneuronal potential differences manifested in the 
EEG, which correspond to the local field potentials (Freeman et al., 2001). The fact that 
neurons are able to synchronize their subthreshold oscillations (excitatory postsynaptic 
potential, EPSP and inhibitory postsynaptic potential, IPSP), leading to fixed states of an 
overall neuronal assembly and to rapid transitions between such states, was shown 
experimentally and in computational models (Makarenko and Llinas, 1998). Generally, the 
overall pattern of correlated activity is very sensitive to fluctuations and it may be swiftly 
rearranged during rapid shift (Kirillov and Makarenko, 1991; for review, see Singer et al., 
1997). As it was demonstrated in vitro, the intervals of local fixed potentials are manifested in 
the oscillatory waves, which are the result of neuronal clustering (Leznik et al., 2002). At the 
EEG level these intervals are reflected in defined periods (segments) of quasi-stationary 
activity32 (Fig. 3) operating in different frequency ranges (for review, see Kaplan and 
Shishkin, 2000; Kaplan et al., 2005). In this case, it is possible to consider one segment as the 
single event in EEG-phenomenology (Fingelkurts and Fingelkurts, 2001). Within the duration 
of one segment, the neuronal assembly that generates the oscillations is in the steady 
stationary state (Brodsky et al., 1999). The transition from one segment to another reflects the 
changes of the generator system microstate or changes in the activity of the two or more 
systems (Jansen et al., 1988; Kaplan and Shishkin, 2000). Thus, in order to detect such rapid 
transitions the task is to divide the EEG signal into stationary segments by estimating the 
points of transition. These instants within short-time window, when the EEG amplitude is 
changed abruptly, are identified as rapid transition processes (RTP) (Kaplan et al., 2005). 
RTP is supposed to be of minor length, and therefore can be treated as a point or near-point33 
(Fig. 3; see also Fingelkurts and Fingelkurts, 2001). The issue of segmental description of 
brain activity has been addressed by several researchers (for review see Barlow, 1985). 
However, virtually all such segmentation approaches have a number of inherent limitations 
(for a detailed review and discussion see Kaplan and Shishkin, 2000 and Kaplan et al., 2001). 

 
 

                                                        
32  Yet in 1972 year, it was experimentally shown in detail by Elul, that EEG is a product of (de)synchronized 

neurons within a cellular assembly (Elul, 1972a,b). EEG waves recorded from the scalp are integrated 
excitatory postsynaptic potentials (EPSP's) and inhibitory postsynaptic potentials (IPSP's) of neuronal 
membranes. Since they reflect extracellular currents caused by synchronized neural activity within the local 
brain volume (John, 2002), the EEG signal within quasi-stationary segments is the envelope of the probability 
of non-random coherence (so called a “common mode”) in the neuronal ensembles near to the recording 
electrodes.  

33  Note, that mathematically it is not important in which time-window the amplitude transition is estimated. What 
is important, – it is the speed of such transition. Experimentally it was found, that amplitude transition in the 
RTP area is always very rapid – not less than twofold, if comparison is made between amplitude values in the 
close area before RTP and immediately after it (Fingelkurts, 1998). 
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Figure 3.  Correspondence between neuronal assemblies and EEG segments. A, amplitude of EEG 
segments; EEG, electroencephalogram; NA, neuronal assemblies of different size; O – operations of 
different duration; RTP, rapid transition periods (boundaries between quasi-stationary EEG segments). 

 
To overcome the disadvantages of classical methods of segmentation, the novel 

technology of the adaptive nonparametric EEG/MEG segmentation was developed (Kaplan et 
al., 1997; 2005). This method is performed in two stages (Fig. 4 A). The first stage is 
performed in two steps. During the first step, the native EEG/MEG values were converted 
into the module. Second step corresponds to the basic procedure of segmentation: The main 
idea is in comparison of the ongoing EEG/MEG amplitude absolute values averaged in the 
sliding test-window and EEG/MEG amplitude absolute values averaged in the sliding level-
window (test window << level window). The duration of windows is short (6-800 ms) and 
dependent on the analyzed frequency range and sampling rate of the signal; the shift of both 
windows is equal to one data-point. The use of short time windows is motivated by the need 
for tracking non-stationary transient cortical processes on a sub-second time scale. As a result 
of averaging in sliding test- and level-windows, two new sequences (test – t and level – l) are 
constructed from the initial one, and are placed on the same time-scale (Fig. 4 A). The time-
instants corresponding to the crossing of t- and l-time-series become a preliminary estimate of 
RTP.  
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The aim of the second stage is to estimate the statistically significant RTPs. For that the 
two conditions should meet (Fig. 4 B). First condition estimates the steepness of a change 
(Fig. 4 B, a): the EEG/MEG amplitude values are averaged at the t-time-series within n data-
points before (M –n) and after (M +n) preliminary RTP. If the result of subtraction (M +n – M –

n) is statistically significant (the Student criteria, p < 0.05 with coefficient 0.3), then this first 
condition is accepted and second condition should be tested. Second condition (Fig. 4 B, b) 
must be fulfilled in order to eliminate possible “false alerts” associated with anomalous peaks 
in the EEG/MEG amplitude. The five points of the digitized EEG/MEG following this 
preliminary RTP must have a statistically significant difference between averaged amplitude 
values in the t- and l- time-series (the Student criteria, p < 0.05 with coefficient 0.1). Only if 
these two criteria are met, the preliminary RTP is assumed as actual.  
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Figure 4. Nonparametric adaptive level segmentation of EEG/MEG (schematic presentation). A, 
First stage of segmentation (two steps). On the horizontal axis the data-points of digitized signal is 
shown. On the vertical axis the amplitude of the signal is shown in µV2. Vertical dotted lines indicate 
the time coordinates of preliminary RTPs. B, Second stage of segmentation: two conditions for 
estimation the statistical significance of preliminary RTP (pRTP). Explanation in the text.  

 
Using this technique, the sequence of RTPs with statistically proven (p < 0.05, Student t-

test) time coordinates can be determined for each EEG/MEG location individually for each 
analyzed EEG/MEG epoch. RTPs or jumps in EEG/MEG amplitude in such a way are, in 
fact, the markers of boundaries between concatenated quasi-stationary segments. By varying 
the parameters of this technique it is possible to obtain the segments corresponding to a more 
or less detailed structure of the EEG/MEG. Therefore, there are prospects for the description 
of the structural EEG/MEG organization as a hierarchy of segmental descriptions on different 
time scales (Kaplan and Shishkin, 2000). The modeling experiments and theoretical concepts 
behind this analysis are described elsewhere (Kaplan, 1998; Kaplan and Shishkin, 2000; 
Fingelkurts et al., 2005; Kaplan et al., 2005). 

After quasi-stationary segments (indexed by RTP) are obtained, several characteristics 
(attributes) of segments (Kaplan and Borisov, 2003) can be calculated separately for each 
channel (Fig. 3): 

1. Average amplitude (A) within each segment (μV2) – as generally agreed, indicates 
mainly the volume or size of neuronal population. 

2. Average length (L) of segments (ms) – illustrates the functional life span of neuronal 
population or the duration of operations produced by this population.  

3. Coefficient of amplitude variability (V) within segments (%) – shows the stability of 
local neuronal synchronization within neuronal population or assembly. 

4. Average amplitude relation (AR) among adjacent segments (%) – indicates the 
neuronal assembly behavior – growth (recruiting of new neurons) or distraction 
(functional elimination of neurons). 

5. Average steepness (S) among adjacent segments (estimated in the close area of RTP) 
(%) – reflects the speed of neuronal population growth or distraction. 

The comparison of the same segment attributes between different experimental 
conditions or functional states is performed using Wilcoxon matched pairs t-test. These 
attributes reflect different aspects of local processes in the cortex and thus permit assessing 
the mesolevel description of cortex interactions (interactions within transient neuronal 
assemblies) through large-scale EEG/MEG estimates (for experimental support and detailed 
discussion see Fingelkurts et al., 2004b; Kaplan et al., 2005). 

 
 

Estimation of Functional Connectivity and/or OM 
 
Considering that complex cognitive operations arise from combined synchronous 

operations of many neural assemblies, the measure of functional connectivity should be 
capable to estimate such synchrony. Traditionally, coherence and correlation have been the 
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main methods to assess the degree of functional connectivity between brain areas (Thatcher et 
al., 1986). Recently, several new methods for detecting functional connectivity between 
cortical areas have been introduced: Partial directed coherence (Baccala and Sameshima, 
2001), dynamic imaging of coherent sources (Gross et al., 2001), structural equation models 
for fMRI (Friston and Buchel, 2000), and phase synchrony (Tass, 1999). However, all these 
methods have several limitations (for a discussion, see Fingelkurts et al., 2005a).  

The novel approach overcomes the disadvantages of conventional methods, and can 
reveal inherent functional interrelationships between cortical areas different from those 
measured by correlation, coherence and phase analysis (for a discussion and modeling 
experiments see Kaplan et al., 2005; Fingelkurts et al., 2005a).  

The technology for estimation of functional brain connectivity through the index of 
EEG/MEG structural synchrony (ISS) is as follows. Each rapid transitional process (RTP) in 
the reference EEG/MEG channel (the channel with the minimal number of RTP from any pair 
of EEG/MEG channels) is surrounded by a short “window” (ms). It is taken that any RTP 
from another (test) channel coincided if it fell within this window. The ISS for pairs of 
EEG/MEG channels can be estimated using this procedure. The ISS is computed as follows: 

 
ISS = mwindows – mresidual , 

where    mwindows = 100 * 
w

w

sl
sn

 ; mresidual = 100 * 
r

r

sl
sn

; 

 
snw – total number of RTPs in all windows (window for synchronization) in the test 
channel; 
slw – total length of EEG/MEG recording (in data points) inside all windows in the test 
channel; 
snr – total number of RTPs outside the windows (window for synchronization) in the test 
channel; 
slr – total length of EEG/MEG recording (in data points) outside the windows in the test 
channel.   
 
It is obvious, however, that even in the absence of any functional interrelations between 

EEG/MEG locations there should be a certain stochastic level of RTPs coupling, which would 
reflect merely occasional synchrony. The values of such stochastic inter-location relations 
should be uniform and substantially lower than in the actual presence of functional 
interrelation between different of EEG/MEG channels. Because of unknown statistical 
properties of the RTPs coincidence, the construction of thresholds is necessary. The time-
variant thresholds were established by the use of surrogate data. Thus, to arrive at a direct 
estimation of a 5% level of statistical significance of the ISS (p < 0.05), computer simulation 
of RTP’s synchronization is undertaken based on random shuffling of time segments marked 
by RTPs (500 independent trials). These share the properties of the experimental data 
(number of RTPs in each EEG/MEG channel of analyzed pair, number of segments, and 
number of windows of synchronization), but the time coordinates of RTPs were altered 
randomly in each trial so as to destroy the natural temporal structure of the data. Justification 
for this approach can be found in Fingelkurts et al. (2004a). However, other approaches are 
also possible (see for example Bullmore et al., 2001).         
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As a result of 500 times repeated random reshuffling of the time segments marked by 
RTPs the stochastic level of RTPs coupling (ISSstoh), and the upper and lower thresholds of 
ISSstoh significance (5%) are calculated. These values represent an estimation of the 
maximum (by module) possible stochastic rate of RTPs coupling (confidence levels). Only 
those values of ISS which exceeded the upper (active coupling) and lower (active decoupling) 
thresholds of ISSstoh have been assumed to be statistically valid (p < 0.05). Thus, the ISS 
tends towards zero where there is no synchronization between the EEG/MEG segments and 
has positive or negative values where such synchronization exists (Fig. 5). Positive values 
indicate ‘active’ coupling of EEG/MEG segments (synchronization of EEG/MEG segments is 
observed significantly more often than expected by chance), whereas negative values mark 
‘active’ decoupling of segments (synchronization of EEG/MEG segments is observed 
significantly less than expected by chance). From a qualitative perspective, the coupling of 
EEG/MEG segments corresponds to the phenomenon of synchronization of brain operations 
or Operational Synchrony – OS (for review, see Fingelkurts and Fingelkurts, 2001, 2003).  
 

Figure 5. Schematic illustration of the index of structural synchrony (ISS) and its stochastic 
levels. As an example, the calculations of ISS are shown for 16 EEG channels. The Y-axis displays the 
ISS values found in the experiment (illustrated as gray bars). The X-axis displays the 120 possible pair 
combinations of 16 EEG channels (1 = O1-O2, 2 = O1-P3, 3 = O1-P4, 4 = O1-T5, … 115 = F4-Fz, 116 
= F4-F7, 117 = F4-F8, 118 = Fz-F7, 119 = Fz-F8, 120 = F7-F8). Figure is reproduced from the 
Fingelkurts et al. 2004, Human Brain Mapping ©. 

 
It is obvious also that there should be the synchronization of segments in a more than two 

EEG (or MEG) locations, assuming that same set of neuronal assemblies may co-operate in 
different combinations along the execution of a cognitive and mental acts (Fingelkurts and 
Fingelkurts, 2003, 2004). Thus, transient synchronization of brain operations (indexed by 
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structural synchrony in EEG/MEG) going on in several cortical areas would construct a so-
called operational module (OM) (Kaplan, 1995; see also Fingelkurts and Fingelkurts, 2001; 
for experimental support see Fingelkurts et al., 2003a; 2004b), which constitutes the unified 
and metastable neural state (for a detail see Fig. 2 and the previous section of this Chapter). 
OM means that the set of the neuronal assemblies synchronously participated in the same 
cognitive act during the analyzed period. The criterion for defining an OM is a sequence of 
the same synchrocomplexes (SC). Whereby, SC is a set of EEG/MEG channels in which each 
channel forms a paired combination (high values of ISS) with all other EEG/MEG channels in 
the same set (Fig. 6); meaning that all pairs of channels in an SC have to have significant 
index of structural synchrony (Fingelkurts et al., 2003a; 2004b; see also Fingelkurts and 
Fingelkurts 2003).  
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Figure 6. Estimation of OM. RTP, rapid transition periods, – are the boundaries between EEG/MEG 
quasi-stationary segments (at electromagnetic level) and the boundaries between neural operations (at 
the phenomenological level). F3, is the left frontal area; P4, is the right parietal area; and O1, is the left 
occipital area. Only neural assemblies in these areas synchronize their operations on a particular time-
scale. SC, momentary synchrocomplex, – the synchronization of RTPs between different local 
EEG/MEG at a particular moment.  

 
The result of structural synchrony measure is automatically drowned upon computer OS 

maps (Fig. 7). The changes in operational synchrony maps should only considered relevant if 
these changes appeared consistently in a majority of the trials and subjects (not less than 85% 
of occurrence) under the experimental conditions being analyzed. This permits to overcome 
the common problem of multiple comparisons between maps that exists due to the large 
number of electrode pairs in the maps (Rappelsberger and Petsche, 1988). 
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It was demonstrated, that the metastable topological combinations in the EEG/MEG field 
do exist (Fig. 7) and appeared to be correlated with and dependent on the subjects’ individual 
level of anxiety (Shishkin et al., 1998), cognitive tasks (Fingelkurts et al., 2003b), 
multisensory perception (Fingelkurts et al., 2003a), and on the pharmacological influence 
(Fingelkurts et al., 2004a,b), large ontogeny shifts (differences between children and adults) 
(Borisov, 2002), and on the changes in the functional state of the brain during schizoid 
diseases (Kaplan and Borisov, 2002). These data not only increase our knowledge about 
fundamental brain mechanisms, but also provide sensitive indexes which can serve as 
additional diagnostic markers of some psychiatric and brain disorders (Fingelkurts et al., 
2005b). 
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Figure 7. Isomorphism between functional structures of phenomenological experience and 
electromagnetic brain field. Phenomenological level illustrates the ever-changing stream of cognitive 
acts (in limit, thoughts or images) where each momentarily stable pattern is a particular cognitive 
operation. Thus, stream of phenomenal experience has a composite structure: It contains stable nuclei 
(or cognitive operations/thoughts/images) and transitive fringes (or periods). At the EEG/MEG level 
these processes are reflected in the chain of periods of short-term metastable states (or operational 
modules – OM) of the whole brain and its individual subsystems (grey shapes), when the numbers of 
degrees of freedom of the neuronal networks are maximally decreased. Red shapes illustrate complex 
OMs. Changes from one cognitive act to another are achieved through rapid transitional periods. 
Experimental data are presented from the experimental study by Fingelkurts et al., 2003a.   

 
 

CONCLUSION 
 
This Chapter outlines the Operational Architectonics (OA) framework of brain and mind 

functioning (Fingelkurts and Fingelkurts, 2001) with emphasis on neuronal assemblies and 
their operations (mesoscopic level). This framework captures a strong intuition about the 
brain mechanisms that constitute perception, cognition and consciousness. Practical methods 
of imaging the mesoscopic level of brain organization were described. These methods allow 
analyzing with an incredible detail the operational behavior of local neuronal assemblies and 
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their joint activity in the form of unified and metastable operational modules. We argue that 
the level of brain organization revealed by these methods corresponds to the phenomenal 
level of cognition and consciousness.  
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